—————————– Supplementary information to —————————-

—————— META-ANALYSIS REVEALS AN EXTREME “DECLINE EFFECT” —————— —————— IN OCEAN ACIDIFICATION IMPACTS ON FISH BEHAVIOUR ——————-

——– Jeff C. Clements, Josefin Sundin, Timothy D. Clark, Fredrik Jutfelt ———-



Get packages
library(pacman)
## Warning: package 'pacman' was built under R version 4.1.2
pacman::p_load(metafor, MCMCglmm, tidyverse, rotl, magrittr, kableExtra, rmarkdown,gridExtra, psych, bindrcpp, pander)
library(BiocManager)
## Warning: package 'BiocManager' was built under R version 4.1.2
## Bioconductor version '3.14' is out-of-date; the current release version '3.15'
##   is available with R version '4.2'; see https://bioconductor.org/install
library(ggplot2)
library(viridis)
## Loading required package: viridisLite
library(patchwork)
## Warning: package 'patchwork' was built under R version 4.1.2
META-ANALYSIS - YEAR ONLINE - FULL DATASET

##attach dataset

decline<-read.csv(file.choose()) ##use dataset "S5 Data"
attach(decline)

##set factors

decline$year.online<-as.factor(decline$year.online)
decline$year.print<-as.factor(decline$year.print)
decline$obs<-as.factor(decline$obs)
decline$study<-as.factor(decline$study)

##view summary

summary(decline)
##       obs          study       authors           year.online    year.print 
##  1      :  1   a87    : 40   Length:644         2018   :148   2018   :168  
##  2      :  1   a90    : 36   Class :character   2015   : 99   2015   : 85  
##  3      :  1   a31    : 28   Mode  :character   2017   : 72   2016   : 71  
##  4      :  1   a22    : 24                      2014   : 65   2013   : 66  
##  5      :  1   a73    : 22                      2013   : 54   2014   : 58  
##  6      :  1   a42    : 21                      2019   : 52   2017   : 57  
##  (Other):638   (Other):473                      (Other):154   (Other):139  
##   if.at.pub           X2017.if           if.group             avg.n       
##  Length:644         Length:644         Length:644         Min.   :  4.25  
##  Class :character   Class :character   Class :character   1st Qu.: 11.95  
##  Mode  :character   Mode  :character   Mode  :character   Median : 18.10  
##                                                           Mean   : 26.69  
##                                                           3rd Qu.: 30.00  
##                                                           Max.   :156.17  
##                                                           NA's   :553     
##    species            climate              cue              cue.type        
##  Length:644         Length:644         Length:644         Length:644        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##   life.stage            ctrl.n         ctrl.mean            ctrl.sd         
##  Length:644         Min.   :  3.00   Min.   :   -61.58   Min.   :    0.000  
##  Class :character   1st Qu.: 10.00   1st Qu.:     1.39   1st Qu.:    1.197  
##  Mode  :character   Median : 18.00   Median :    10.32   Median :    5.867  
##                     Mean   : 27.73   Mean   :   548.23   Mean   :  127.582  
##                     3rd Qu.: 36.00   3rd Qu.:    46.10   3rd Qu.:   21.804  
##                     Max.   :245.00   Max.   :154936.88   Max.   :25490.446  
##                                                                             
##       oa.n           oa.mean              oa.sd         
##  Min.   :  2.00   Min.   :   -25.51   Min.   :    0.00  
##  1st Qu.: 10.00   1st Qu.:     1.44   1st Qu.:    1.08  
##  Median : 18.00   Median :    13.19   Median :    6.47  
##  Mean   : 27.64   Mean   :   546.48   Mean   :  138.96  
##  3rd Qu.: 36.00   3rd Qu.:    45.52   3rd Qu.:   20.33  
##  Max.   :249.00   Max.   :157061.25   Max.   :36812.37  
## 

##subset by year

y2009 <- filter(decline, year.online == "2009")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2009$obs <- 1:nrow(y2009)
y2010 <- filter(decline, year.online == "2010")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2010$obs <- 1:nrow(y2010)
y2011 <- filter(decline, year.online == "2011")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2011$obs <- 1:nrow(y2011)
y2012 <- filter(decline, year.online == "2012")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2012$obs <- 1:nrow(y2012)
y2013 <- filter(decline, year.online == "2013")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2013$obs <- 1:nrow(y2013)
y2014 <- filter(decline, year.online == "2014")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2014$obs <- 1:nrow(y2014)
y2015 <- filter(decline, year.online == "2015")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2015$obs <- 1:nrow(y2015)
y2016 <- filter(decline, year.online == "2016")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2016$obs <- 1:nrow(y2016)
y2017 <- filter(decline, year.online == "2017")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2017$obs <- 1:nrow(y2017)
y2018 <- filter(decline, year.online == "2018")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2018$obs <- 1:nrow(y2018)
y2019 <- filter(decline, year.online == "2019")[,-match(c("avg.n","cue.type","if.at.pub","X2017.if","if.group"), colnames (decline))]
y2019$obs <- 1:nrow(y2019)

##compute effect sizes for each year

lnRR2009 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2009,append=TRUE)
lnRR2010 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2010,append=TRUE)
lnRR2011 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2011,append=TRUE)
lnRR2012 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2012,append=TRUE)
lnRR2013 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2013,append=TRUE)
lnRR2014 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2014,append=TRUE)
lnRR2015 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2015,append=TRUE)
lnRR2016 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2016,append=TRUE)
lnRR2017 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2017,append=TRUE)
lnRR2018 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2018,append=TRUE)
lnRR2019 <- escalc(measure= "ROM", m1i=oa.mean,sd1i=oa.sd,n1i=oa.n,m2i=ctrl.mean,sd2i=ctrl.sd,n2i=ctrl.n,data=y2019,append=TRUE)

#Note log(m1i/m21i) produced NAs for 2011, 2012, 2013, 2015, 2017

##remove NAs

lnRR2009clean<-na.omit(lnRR2009)
lnRR2010clean<-na.omit(lnRR2010)
lnRR2011clean<-na.omit(lnRR2011)
lnRR2012clean<-na.omit(lnRR2012)
lnRR2013clean<-na.omit(lnRR2013)
lnRR2014clean<-na.omit(lnRR2014)
lnRR2015clean<-na.omit(lnRR2015)
lnRR2016clean<-na.omit(lnRR2016)
lnRR2017clean<-na.omit(lnRR2017)
lnRR2018clean<-na.omit(lnRR2018)
lnRR2019clean<-na.omit(lnRR2019)

##view mean-variance relationship

pp1<-ggplot(decline,aes(x=log(ctrl.mean),y=log(ctrl.sd),col=year.online))+ geom_point(size=2,na.rm = TRUE)
pp2<-ggplot(decline,aes(x=log(oa.mean),y=log(oa.sd),col=year.online))+ geom_point(size=2,na.rm = TRUE)
grid.arrange(pp1,pp2, nrow =1)
## Warning in log(ctrl.mean): NaNs produced

## Warning in log(ctrl.mean): NaNs produced
## Warning in log(oa.mean): NaNs produced

## Warning in log(oa.mean): NaNs produced

#Note there are a number of NAs created due the the log of a negative being not computible

##look at lnRR by year

MLMA_2009_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2009)
## Warning: Ratio of largest to smallest sampling variance extremely large. May not
## be able to obtain stable results.
summary(MLMA_2009_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 19; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.2698   90.5396   94.5396   96.3203   95.3396   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    8.8874  2.9812     19     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 18) = 119881336.7140, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   1.7731  0.6867  2.5822  0.0098  0.4273  3.1190  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2010_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2010)
summary(MLMA_2010_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 16; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -34.5830   69.1660   73.1660   74.5821   74.1660   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    5.6352  2.3739     16     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 15) = 64897.7678, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   3.6777  0.6010  6.1197  <.0001  2.4998  4.8556  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2011_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2011)
summary(MLMA_2011_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -24.6248   49.2495   53.2495   55.2410   53.9554   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.1397  0.3738     21     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 20) = 98.8893, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub 
##   0.0188  0.1062  0.1771  0.8594  -0.1894  0.2270    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2012_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2012)
## Warning: Ratio of largest to smallest sampling variance extremely large. May not
## be able to obtain stable results.
summary(MLMA_2012_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 47; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -91.1326  182.2651  186.2651  189.9224  186.5442   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    1.8575  1.3629     47     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 46) = 15391.4935, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval    ci.lb   ci.ub 
##   0.1019  0.2214  0.4604  0.6452  -0.3320  0.5359    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2013_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2013)
summary(MLMA_2013_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 54; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -104.0133   208.0266   212.0266   215.9671   212.2666   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    1.5594  1.2487     54     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 53) = 712.3763, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub 
##  -0.5893  0.2035  -2.8963  0.0038  -0.9880  -0.1905  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2014_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2014)
summary(MLMA_2014_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 65; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -147.9047   295.8093   299.8093   304.1271   300.0060   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    5.8596  2.4207     65     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 64) = 1197354.2596, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub 
##  -0.2053  0.3031  -0.6773  0.4982  -0.7994  0.3888    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2015_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2015)
summary(MLMA_2015_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 99; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -74.9918  149.9836  153.9836  159.1535  154.1099   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.0943  0.3071     99     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 98) = 367.3613, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb    ci.ub 
##  -0.1021  0.0429  -2.3811  0.0173  -0.1861  -0.0181  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2016_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2016)
## Warning: Ratio of largest to smallest sampling variance extremely large. May not
## be able to obtain stable results.
summary(MLMA_2016_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 51; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.0134   80.0267   84.0267   87.8508   84.2820   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.2381  0.4880     51     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 50) = 70868.7377, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub 
##  -0.0421  0.0726  -0.5801  0.5619  -0.1844  0.1002    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2017_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2017)
summary(MLMA_2017_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 72; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -49.9959   99.9917  103.9917  108.5171  104.1682   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.1058  0.3252     72     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 71) = 255.4688, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub 
##  -0.0337  0.0480  -0.7033  0.4819  -0.1277  0.0603    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2018_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2018)
## Warning: Ratio of largest to smallest sampling variance extremely large. May not
## be able to obtain stable results.
summary(MLMA_2018_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 148; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -245.1928   490.3856   494.3856   500.3665   494.4690   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.9890  0.9945    148     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 147) = 2047.3810, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub 
##  -0.0073  0.0889  -0.0822  0.9344  -0.1816  0.1670    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MLMA_2019_lnRR <- rma.mv(yi ~ 1, V = vi, random=~1|obs, data=lnRR2019)
summary(MLMA_2019_lnRR)
## 
## Multivariate Meta-Analysis Model (k = 52; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -47.0733   94.1465   98.1465  102.0102   98.3965   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed  factor 
## sigma^2    0.1813  0.4258     52     no     obs 
## 
## Test for Heterogeneity:
## Q(df = 51) = 302.1940, p-val < .0001
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub 
##  -0.0709  0.0646  -1.0963  0.2730  -0.1976  0.0558    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##set prior

prior <- list(R=list(V = 1, nu =0.002), G = list(G = list(V=1, nu = 0.002)))

##run bayesian MLMA models

model_magnitude_bayes_2009 <- MCMCglmm(yi ~ 1, mev = lnRR2009clean$vi, random = ~obs, data = lnRR2009clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2010 <- MCMCglmm(yi ~ 1, mev = lnRR2010clean$vi, random = ~obs, data = lnRR2010clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2011 <- MCMCglmm(yi ~ 1, mev = lnRR2011clean$vi, random = ~obs, data = lnRR2011clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2012 <- MCMCglmm(yi ~ 1, mev = lnRR2012clean$vi, random = ~obs, data = lnRR2012clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2013 <- MCMCglmm(yi ~ 1, mev = lnRR2013clean$vi, random = ~obs, data = lnRR2013clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2014 <- MCMCglmm(yi ~ 1, mev = lnRR2014clean$vi, random = ~obs, data = lnRR2014clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2015 <- MCMCglmm(yi ~ 1, mev = lnRR2015clean$vi, random = ~obs, data = lnRR2015clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2016 <- MCMCglmm(yi ~ 1, mev = lnRR2016clean$vi, random = ~obs, data = lnRR2016clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2017 <- MCMCglmm(yi ~ 1, mev = lnRR2017clean$vi, random = ~obs, data = lnRR2017clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2018 <- MCMCglmm(yi ~ 1, mev = lnRR2018clean$vi, random = ~obs, data = lnRR2018clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)
model_magnitude_bayes_2019 <- MCMCglmm(yi ~ 1, mev = lnRR2019clean$vi, random = ~obs, data = lnRR2019clean, prior = prior, burnin = 10000, nitt = 1000000, thin = 100, verbose = FALSE)

##get model summaries

summary(model_magnitude_bayes_2009)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: 31.51985 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs     5.097 0.0002356    14.26     3103
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units     5.061 0.0002329    14.29     3114
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp  pMCMC  
## (Intercept)    1.7739   0.3589   3.2469     9536 0.0208 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model_magnitude_bayes_2010)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: 23.90192 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs     3.341 0.0001892    9.677     4585
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units     3.338 0.0002461    9.757     4192
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp  pMCMC    
## (Intercept)     3.673    2.425    4.973     9900 <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model_magnitude_bayes_2011)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: -11.28967 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs   0.08409 0.0002079   0.2392     8200
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units   0.08199 0.0002033   0.2395     7772
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept)   0.01837 -0.21101  0.23836     9900 0.885
summary(model_magnitude_bayes_2012)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: 45.14502 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs    0.9774 0.0001899    2.489     1733
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units     1.006 0.0001908    2.499     1713
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept)   0.09536 -0.37585  0.53135     9900 0.669
summary(model_magnitude_bayes_2013)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: 39.93272 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs    0.8623 0.0002047    2.075     1589
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units     0.785 0.0001698    2.025     1654
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp   pMCMC   
## (Intercept)   -0.5876  -0.9980  -0.1784     9900 0.00667 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model_magnitude_bayes_2014)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: 87.08115 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs     3.105 0.0001631    7.274    850.3
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units     2.965 0.0001571    7.231    834.2
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept)   -0.2140  -0.8044   0.4100     9900 0.487
summary(model_magnitude_bayes_2015)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: -68.60624 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs   0.04967 0.0002081   0.1198     2438
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units   0.04949 0.0002497   0.1195     2514
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp  pMCMC  
## (Intercept)  -0.10226 -0.19303 -0.01937     9900 0.0212 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model_magnitude_bayes_2016)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: -16.68832 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs    0.1268 0.0002429   0.3028     3099
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units    0.1239 0.0001545   0.3033     3152
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept)  -0.04269 -0.18783  0.10043     9900  0.56
summary(model_magnitude_bayes_2017)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: -47.45125 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs   0.05514 0.0001951   0.1385     3296
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units   0.05638 0.0001962   0.1418     3313
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept)  -0.03344 -0.13233  0.05938     9900 0.487
summary(model_magnitude_bayes_2018)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: 88.38417 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs       0.5 0.0002256    1.146    604.6
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units    0.5085 0.0002445    1.153    625.3
## 
##  Location effects: yi ~ 1 
## 
##             post.mean  l-95% CI  u-95% CI eff.samp pMCMC
## (Intercept) -0.008286 -0.184830  0.165156     9900 0.928
summary(model_magnitude_bayes_2019)
## 
##  Iterations = 10001:999901
##  Thinning interval  = 100
##  Sample size  = 9900 
## 
##  DIC: -23.5312 
## 
##  G-structure:  ~obs
## 
##     post.mean  l-95% CI u-95% CI eff.samp
## obs   0.09752 0.0002232   0.2482     3376
## 
##  R-structure:  ~units
## 
##       post.mean  l-95% CI u-95% CI eff.samp
## units   0.09594 0.0001801   0.2484     3712
## 
##  Location effects: yi ~ 1 
## 
##             post.mean l-95% CI u-95% CI eff.samp pMCMC
## (Intercept)  -0.07209 -0.20128  0.05897     9900 0.269

##extract posteriors

sol2009 <- model_magnitude_bayes_2009$Sol
VCV2009 <- model_magnitude_bayes_2009$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2009$VCV))]
sol2010 <- model_magnitude_bayes_2010$Sol 
VCV2010 <- model_magnitude_bayes_2010$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2010$VCV))]
sol2011 <- model_magnitude_bayes_2011$Sol 
VCV2011 <- model_magnitude_bayes_2011$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2011$VCV))]
sol2012 <- model_magnitude_bayes_2012$Sol 
VCV2012 <- model_magnitude_bayes_2012$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2012$VCV))]
sol2013 <- model_magnitude_bayes_2013$Sol 
VCV2013 <- model_magnitude_bayes_2013$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2013$VCV))]
sol2014 <- model_magnitude_bayes_2014$Sol 
VCV2014 <- model_magnitude_bayes_2014$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2014$VCV))]
sol2015 <- model_magnitude_bayes_2015$Sol 
VCV2015 <- model_magnitude_bayes_2015$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2015$VCV))]
sol2016 <- model_magnitude_bayes_2016$Sol 
VCV2016 <- model_magnitude_bayes_2016$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2016$VCV))]
sol2017 <- model_magnitude_bayes_2017$Sol 
VCV2017 <- model_magnitude_bayes_2017$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2017$VCV))]
sol2018 <- model_magnitude_bayes_2018$Sol 
VCV2018 <- model_magnitude_bayes_2018$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2018$VCV))]
sol2019 <- model_magnitude_bayes_2019$Sol 
VCV2019 <- model_magnitude_bayes_2019$VCV[,-match("sqrt(mev):sqrt(mev).meta", colnames(model_magnitude_bayes_2019$VCV))]

##get folded normal function

mu.fnorm <- function(mu, sigma){dnorm(mu, 0, sigma)*2*sigma^2 + mu*(2*pnorm(mu, 0, sigma) -1)}

##get magnitude means + variance

magnitude_mean_2009 <- mu.fnorm(sol2009[,1], sqrt(rowSums(VCV2009)))
magnitude_2009_mean <- data.frame(mean_mag = mean(magnitude_mean_2009), L_CI = HPDinterval(magnitude_mean_2009)[1], U_CI = HPDinterval(magnitude_mean_2009)[2])
magnitude_mean_2010 <- mu.fnorm(sol2010[,1], sqrt(rowSums(VCV2010)))
magnitude_2010_mean <- data.frame(mean_mag = mean(magnitude_mean_2010), L_CI = HPDinterval(magnitude_mean_2010)[1], U_CI = HPDinterval(magnitude_mean_2010)[2])
magnitude_mean_2011 <- mu.fnorm(sol2011[,1], sqrt(rowSums(VCV2011)))
magnitude_2011_mean <- data.frame(mean_mag = mean(magnitude_mean_2011), L_CI = HPDinterval(magnitude_mean_2011)[1], U_CI = HPDinterval(magnitude_mean_2011)[2])
magnitude_mean_2012 <- mu.fnorm(sol2012[,1], sqrt(rowSums(VCV2012)))
magnitude_2012_mean <- data.frame(mean_mag = mean(magnitude_mean_2012), L_CI = HPDinterval(magnitude_mean_2012)[1], U_CI = HPDinterval(magnitude_mean_2012)[2])
magnitude_mean_2013 <- mu.fnorm(sol2013[,1], sqrt(rowSums(VCV2013)))
magnitude_2013_mean <- data.frame(mean_mag = mean(magnitude_mean_2013), L_CI = HPDinterval(magnitude_mean_2013)[1], U_CI = HPDinterval(magnitude_mean_2013)[2])
magnitude_mean_2014 <- mu.fnorm(sol2014[,1], sqrt(rowSums(VCV2014)))
magnitude_2014_mean <- data.frame(mean_mag = mean(magnitude_mean_2014), L_CI = HPDinterval(magnitude_mean_2014)[1], U_CI = HPDinterval(magnitude_mean_2014)[2])
magnitude_mean_2015 <- mu.fnorm(sol2015[,1], sqrt(rowSums(VCV2015)))
magnitude_2015_mean <- data.frame(mean_mag = mean(magnitude_mean_2015), L_CI = HPDinterval(magnitude_mean_2015)[1], U_CI = HPDinterval(magnitude_mean_2015)[2])
magnitude_mean_2016 <- mu.fnorm(sol2016[,1], sqrt(rowSums(VCV2016)))
magnitude_2016_mean <- data.frame(mean_mag = mean(magnitude_mean_2016), L_CI = HPDinterval(magnitude_mean_2016)[1], U_CI = HPDinterval(magnitude_mean_2016)[2])
magnitude_mean_2017 <- mu.fnorm(sol2017[,1], sqrt(rowSums(VCV2017)))
magnitude_2017_mean <- data.frame(mean_mag = mean(magnitude_mean_2017), L_CI = HPDinterval(magnitude_mean_2017)[1], U_CI = HPDinterval(magnitude_mean_2017)[2])
magnitude_mean_2018 <- mu.fnorm(sol2018[,1], sqrt(rowSums(VCV2018)))
magnitude_2018_mean <- data.frame(mean_mag = mean(magnitude_mean_2018), L_CI = HPDinterval(magnitude_mean_2018)[1], U_CI = HPDinterval(magnitude_mean_2018)[2])
magnitude_mean_2019 <- mu.fnorm(sol2019[,1], sqrt(rowSums(VCV2019)))
magnitude_2019_mean <- data.frame(mean_mag = mean(magnitude_mean_2019), L_CI = HPDinterval(magnitude_mean_2019)[1], U_CI = HPDinterval(magnitude_mean_2019)[2])

##view ES magnitudes and uncertainty

magnitude_2009_mean
##   mean_mag     L_CI    U_CI
## 1 2.958831 2.049309 3.96643
magnitude_2010_mean
##   mean_mag    L_CI     U_CI
## 1 3.894468 2.84035 4.952511
magnitude_2011_mean
##    mean_mag      L_CI      U_CI
## 1 0.3286311 0.1887599 0.4890088
magnitude_2012_mean
##   mean_mag      L_CI    U_CI
## 1 1.132439 0.8757109 1.42672
magnitude_2013_mean
##   mean_mag      L_CI     U_CI
## 1 1.135282 0.8670486 1.406788
magnitude_2014_mean
##   mean_mag     L_CI     U_CI
## 1 1.980475 1.641251 2.347749
magnitude_2015_mean
##    mean_mag      L_CI      U_CI
## 1 0.2648629 0.2009352 0.3320272
magnitude_2016_mean
##    mean_mag      L_CI      U_CI
## 1 0.4023895 0.3132693 0.5012349
magnitude_2017_mean
##    mean_mag      L_CI      U_CI
## 1 0.2675296 0.1901038 0.3501495
magnitude_2018_mean
##    mean_mag      L_CI     U_CI
## 1 0.8021178 0.6840414 0.925188
magnitude_2019_mean
##    mean_mag      L_CI      U_CI
## 1 0.3553505 0.2536517 0.4683622

#Note Code below not in original. Made to allow a data frame to be constructed and plotted from.

magnitudedata = rbind(magnitude_2009_mean, magnitude_2010_mean, magnitude_2011_mean, magnitude_2012_mean, magnitude_2013_mean, magnitude_2014_mean, magnitude_2015_mean, magnitude_2016_mean, magnitude_2017_mean, magnitude_2018_mean, magnitude_2019_mean)
yearlabel = c("2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018", "2019")
magnitudedata = cbind(yearlabel, magnitudedata )
magnitudedata
##    yearlabel  mean_mag      L_CI      U_CI
## 1       2009 2.9588308 2.0493088 3.9664297
## 2       2010 3.8944684 2.8403496 4.9525107
## 3       2011 0.3286311 0.1887599 0.4890088
## 4       2012 1.1324393 0.8757109 1.4267201
## 5       2013 1.1352823 0.8670486 1.4067885
## 6       2014 1.9804749 1.6412511 2.3477486
## 7       2015 0.2648629 0.2009352 0.3320272
## 8       2016 0.4023895 0.3132693 0.5012349
## 9       2017 0.2675296 0.1901038 0.3501495
## 10      2018 0.8021178 0.6840414 0.9251880
## 11      2019 0.3553505 0.2536517 0.4683622

#Note Plot from above model was not included in the original code. This has been built from scratch. Should be the same as Fig 1B

Decline_magnitude<-ggplot(magnitudedata,aes(x=yearlabel, y=mean_mag, colour=yearlabel))  + geom_line(aes(group=1)) + scale_color_viridis(discrete=TRUE)+ geom_point(size=3) +  geom_errorbar(aes (ymin = L_CI, ymax = U_CI), width=0.2) +  scale_y_continuous(breaks = seq(0, 15, by = 1), minor_breaks = NULL, limits=c(0,8),labels = scales::number_format(accuracy = 0.1)) +  theme(legend.position = "none") + xlab("Year of publication online") + ylab("Effect size magnitude (lnRR)")  + theme_minimal(12) + theme(panel.border = element_rect(colour = "black", fill=NA, size=1)) + theme(legend.position = "none") + theme(axis.ticks=element_line()) + theme(axis.text.x = element_text(angle = 45, hjust=1))+ geom_hline(yintercept = 0) 

Decline_magnitude

ggsave(Decline_magnitude, filename = 'Decline magnitude corrected and complete 0.1 and 0.001 remove CO2 under 800 model.png', device=png,  width = 4.2, height = 4.6, units = "in", res = 800)
CREATE SCATTERPLOT FIGURE TO VISUALIZE MEAN EFFECT SIZE MAGNITUDE FOR EACH OBSERVATION OVER TIME (FIG 1A)

##attach dataset

decline_allobs<-read.csv(file.choose()) ##use dataset "S10 Data"
attach(decline_allobs)
## The following objects are masked from decline:
## 
##     ctrl.n, obs, study, year.online, year.print
summary(decline_allobs)
##       obs           study            year.online     year.print  
##  Min.   :  1.0   Length:839         Min.   :2009   Min.   :2009  
##  1st Qu.:210.5   Class :character   1st Qu.:2012   1st Qu.:2013  
##  Median :420.0   Mode  :character   Median :2015   Median :2015  
##  Mean   :420.0                      Mean   :2015   Mean   :2015  
##  3rd Qu.:629.5                      3rd Qu.:2017   3rd Qu.:2018  
##  Max.   :839.0                      Max.   :2019   Max.   :2019  
##                                                                  
##      ctrl.n          lnrr.mag     
##  Min.   :  3.00   Min.   :0.0000  
##  1st Qu.: 10.00   1st Qu.:0.1021  
##  Median : 18.00   Median :0.2738  
##  Mean   : 28.77   Mean   :0.8639  
##  3rd Qu.: 30.00   3rd Qu.:0.8289  
##  Max.   :752.00   Max.   :8.4360  
##                   NA's   :195

##Create plot

#Note I had to fix the specifications of the scale continuous both x and y Original below not working: scale_x_continuous(breaks = round(seq(min(study\(Year), max(study\)Year), by = 1),1)) + scale_y_continuous(breaks = round(seq(min(study$lnrr), 15, by = 1),1)) #Note Code given did not produce a graph that looked exactly the same as in the figures of the paper. Changes to aesthetics were add to make it look the same as the published version.

Decline_studies_loess<-ggplot(decline_allobs,aes(x=year.online, y=lnrr.mag, color=study)) + geom_smooth(method="loess", se=TRUE, fullrange=TRUE, level=0.95,color="black") + geom_point(size=ctrl.n*0.03,alpha=0.6) + scale_size(range = c(1, 2), name="Sample size")+ scale_color_viridis(discrete=TRUE)+ xlab("Year of publication online")+ylab("Effect size magnitude (lnRR)") + scale_x_continuous(breaks = round(seq(min(2009), max(2019), by = 1),1)) + scale_y_continuous(breaks = seq(0, 14, by = 1), minor_breaks = NULL, limits=c(-1,14),labels = scales::number_format(accuracy = 0.1)) + theme_minimal(12) + theme(legend.position = "none") + theme(panel.grid.minor = element_blank())  + theme(panel.border = element_rect(colour = "black", fill=NA, size=1)) + theme(legend.position = "none")+ theme(axis.ticks=element_line()) + theme(axis.text.x = element_text(angle = 45, hjust=1))+ geom_hline(yintercept = 0)

Decline_studies_loess
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 195 rows containing non-finite values (stat_smooth).
## Warning: Removed 195 rows containing missing values (geom_point).

ggsave(Decline_studies_loess, filename = 'Decline magnitude corrected and complete 0.1 and 0.001 remove CO2 under 800 lnRR.png', device=png,  width = 4.2, height = 4.6, units = "in", res = 800)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 195 rows containing non-finite values (stat_smooth).
## Warning: Removed 195 rows containing missing values (geom_point).