R Markdown

library(knitr)
library(rmarkdown)
library(lattice)
library(permute)
library(ggplot2)
library(lme4)
## Loading required package: Matrix
library(MuMIn)
library(vegan)
## This is vegan 2.6-4
library(emmeans)
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(tibble)
library(plyr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
library(janitor)
## 
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(pbkrtest) 
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
## 
##     expand, pack, unpack
library(ggpubr)
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
library(ggthemes)
library(stringr)  
library(ggfortify)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ purrr     1.0.1
## ✔ lubridate 1.9.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::arrange()   masks plyr::arrange()
## ✖ purrr::compact()   masks plyr::compact()
## ✖ dplyr::count()     masks plyr::count()
## ✖ dplyr::desc()      masks plyr::desc()
## ✖ tidyr::expand()    masks Matrix::expand()
## ✖ dplyr::failwith()  masks plyr::failwith()
## ✖ dplyr::filter()    masks stats::filter()
## ✖ dplyr::id()        masks plyr::id()
## ✖ dplyr::lag()       masks stats::lag()
## ✖ ggpubr::mutate()   masks dplyr::mutate(), plyr::mutate()
## ✖ tidyr::pack()      masks Matrix::pack()
## ✖ dplyr::rename()    masks plyr::rename()
## ✖ dplyr::summarise() masks plyr::summarise()
## ✖ dplyr::summarize() masks plyr::summarize()
## ✖ tidyr::unpack()    masks Matrix::unpack()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:purrr':
## 
##     some
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
library(glmmTMB) 
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.5.3
## Current Matrix version is 1.5.4
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
library(nlme)
## 
## Attaching package: 'nlme'
## 
## The following object is masked from 'package:dplyr':
## 
##     collapse
## 
## The following object is masked from 'package:lme4':
## 
##     lmList
library(moments)
library(rlang)
## 
## Attaching package: 'rlang'
## 
## The following objects are masked from 'package:purrr':
## 
##     %@%, flatten, flatten_chr, flatten_dbl, flatten_int, flatten_lgl,
##     flatten_raw, invoke, splice
library(extrafont)
## Registering fonts with R
extrafont::loadfonts(quiet=TRUE)

Input and sort data

library(readr)
Resp_data_summary <- read_csv("C:/Users/jc819096/OneDrive - James Cook University/DATA/Lab 3/Resp data/new resp data.csv")
## Rows: 580 Columns: 29
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (15): Parental_number, Maternal, Maternal_GF, Maternal_GM, Paternal, Pat...
## dbl (14): Tank, Density, Female, Male, Age, Wet_weight, RMR, Mo2_rest, Weigh...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
View(Resp_data_summary)

#combine column for x axis
Resp_data_summary <- Resp_data_summary %>%  
 unite(Temp:Control_CO2, col="Juv_treat", sep="_", remove=FALSE)
head(Resp_data_summary)
## # A tibble: 6 × 30
##    Tank Density Parental_number Female  Male Maternal Maternal_GF Maternal_GM
##   <dbl>   <dbl> <chr>            <dbl> <dbl> <chr>    <chr>       <chr>      
## 1    49      18 89                 190   192 AE       A           E          
## 2    64      11 81                  42   138 DA       D           A          
## 3   130      18 94                 185   190 DA       D           A          
## 4   111      21 45                  76    77 DA       D           A          
## 5     8      16 89                 190   192 AE       A           E          
## 6    10      18 71                  42   193 DA       D           A          
## # ℹ 22 more variables: Paternal <chr>, Paternal_GF <chr>, Paternal_GM <chr>,
## #   Parental_treatment <chr>, DOM <chr>, DOT <chr>, DOD <chr>, Age <dbl>,
## #   Juv_treat <chr>, Control_CO2 <chr>, Temp <chr>, am_pm <chr>,
## #   Chamber_ID <chr>, Wet_weight <dbl>, RMR <dbl>, Mo2_rest <dbl>,
## #   Weight <dbl>, MMR <dbl>, AS <dbl>, FS <dbl>, Mo2_max <dbl>, Mo2_AS <dbl>
#coding the factors 
str(Resp_data_summary)
## tibble [580 × 30] (S3: tbl_df/tbl/data.frame)
##  $ Tank              : num [1:580] 49 64 130 111 8 10 8 102 145 132 ...
##  $ Density           : num [1:580] 18 11 18 21 16 18 16 19 20 13 ...
##  $ Parental_number   : chr [1:580] "89" "81" "94" "45" ...
##  $ Female            : num [1:580] 190 42 185 76 190 42 190 197 76 190 ...
##  $ Male              : num [1:580] 192 138 190 77 192 193 192 185 77 192 ...
##  $ Maternal          : chr [1:580] "AE" "DA" "DA" "DA" ...
##  $ Maternal_GF       : chr [1:580] "A" "D" "D" "D" ...
##  $ Maternal_GM       : chr [1:580] "E" "A" "A" "A" ...
##  $ Paternal          : chr [1:580] "FE" "CA" "AE" "EC" ...
##  $ Paternal_GF       : chr [1:580] "F" "C" "A" "E" ...
##  $ Paternal_GM       : chr [1:580] "E" "A" "E" "C" ...
##  $ Parental_treatment: chr [1:580] "CCCC" "HHCC" "CCCH" "CCHC" ...
##  $ DOM               : chr [1:580] "6/01/2022" "19/02/2022" "15/02/2022" "26/01/2022" ...
##  $ DOT               : chr [1:580] "16/04/2022" "29/06/2022" "23/06/2022" "18/05/2022" ...
##  $ DOD               : chr [1:580] "17/04/2022" "30/06/2022" "24/06/2022" "19/05/2022" ...
##  $ Age               : num [1:580] 101 131 129 113 102 114 101 110 113 101 ...
##  $ Juv_treat         : chr [1:580] "zero_control" "elevated_control" "elevated_CO" "zero_control" ...
##  $ Control_CO2       : chr [1:580] "control" "control" "CO" "control" ...
##  $ Temp              : chr [1:580] "zero" "elevated" "elevated" "zero" ...
##  $ am_pm             : chr [1:580] "pm" "am" "pm" "am" ...
##  $ Chamber_ID        : chr [1:580] "D" "A" "C" "C" ...
##  $ Wet_weight        : num [1:580] 0.88 0.92 0.97 0.98 0.98 0.99 1 1.02 1.03 1.03 ...
##  $ RMR               : num [1:580] 196 279 188 305 191 ...
##  $ Mo2_rest          : num [1:580] 0.17 0.26 0.18 0.3 0.19 0.19 0.19 0.23 0.32 0.17 ...
##  $ Weight            : num [1:580] 0.00088 0.00092 0.00097 0.00098 0.00098 0.00099 0.001 0.00102 0.00103 0.00103 ...
##  $ MMR               : num [1:580] 744 693 607 691 568 ...
##  $ AS                : num [1:580] 548 414 419 386 376 ...
##  $ FS                : num [1:580] 3.8 2.49 3.23 2.26 2.97 ...
##  $ Mo2_max           : num [1:580] 0.655 0.637 0.589 0.677 0.556 ...
##  $ Mo2_AS            : num [1:580] 0.48 0.38 0.41 0.38 0.37 0.73 0.81 0.5 0.54 0.53 ...
Resp_data_summary$Tank= factor (Resp_data_summary$Tank)
Resp_data_summary$Parental_number = factor (Resp_data_summary$Parental_number)
Resp_data_summary$Parental_treatment = factor (Resp_data_summary$Parental_treatment, levels=c("CCCC", "CCCH", "HHCC", "CCHC","HHHC"))
Resp_data_summary$Temp = factor (Resp_data_summary$Temp)
Resp_data_summary$Control_CO2 = factor (Resp_data_summary$Control_CO2, levels=c("control", "CO"))
Resp_data_summary$am_pm = factor (Resp_data_summary$am_pm)
Resp_data_summary$Juv_treat = factor (Resp_data_summary$Juv_treat, levels=c("zero_control", "elevated_control", "zero_CO", "elevated_CO"))

head(Resp_data_summary)
## # A tibble: 6 × 30
##   Tank  Density Parental_number Female  Male Maternal Maternal_GF Maternal_GM
##   <fct>   <dbl> <fct>            <dbl> <dbl> <chr>    <chr>       <chr>      
## 1 49         18 89                 190   192 AE       A           E          
## 2 64         11 81                  42   138 DA       D           A          
## 3 130        18 94                 185   190 DA       D           A          
## 4 111        21 45                  76    77 DA       D           A          
## 5 8          16 89                 190   192 AE       A           E          
## 6 10         18 71                  42   193 DA       D           A          
## # ℹ 22 more variables: Paternal <chr>, Paternal_GF <chr>, Paternal_GM <chr>,
## #   Parental_treatment <fct>, DOM <chr>, DOT <chr>, DOD <chr>, Age <dbl>,
## #   Juv_treat <fct>, Control_CO2 <fct>, Temp <fct>, am_pm <fct>,
## #   Chamber_ID <chr>, Wet_weight <dbl>, RMR <dbl>, Mo2_rest <dbl>,
## #   Weight <dbl>, MMR <dbl>, AS <dbl>, FS <dbl>, Mo2_max <dbl>, Mo2_AS <dbl>

RMR

Exploring raw data

ggplot(Resp_data_summary, aes(y=RMR, x=Age)) + geom_point()

ggplot(Resp_data_summary, aes(y=RMR, x=Weight)) + geom_point()

ggplot(Resp_data_summary, aes(y=RMR, x=Juv_treat, colour=Parental_treatment)) + geom_boxplot()

ggplot(Resp_data_summary, aes(y=Weight, x=Age, colour=Parental_treatment)) + geom_point()

Raw data checks

qqPlot(Resp_data_summary$RMR)

## [1]  39 330
shapiro.test(Resp_data_summary$RMR)
## 
##  Shapiro-Wilk normality test
## 
## data:  Resp_data_summary$RMR
## W = 0.98752, p-value = 7.339e-05
nortest::lillie.test(Resp_data_summary$RMR)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Resp_data_summary$RMR
## D = 0.042159, p-value = 0.01575
leveneTest(RMR ~ Parental_treatment * Temp * Control_CO2, data = Resp_data_summary)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value  Pr(>F)  
## group  19  1.4499 0.09793 .
##       560                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
kurtosis(Resp_data_summary$RMR)
## [1] 2.443537

model

lmer.RMR = lmer(RMR~ Parental_treatment * Temp * Control_CO2 + (1 | Maternal_GF) +  (1 | Maternal_GM)   + (1 | Paternal_GF) +(1 | Paternal_GM) +  (1 | Chamber_ID ) , data = Resp_data_summary)
## boundary (singular) fit: see help('isSingular')

post model checks

performance::check_model(lmer.RMR, check="homogeneity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.RMR, check="outliers") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.RMR, check="qq") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.RMR, check="normality") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.RMR, check="linearity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.RMR, check="pp_check")
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

#Homogeneity
plot(lmer.RMR)

#normality
hist(residuals(lmer.RMR), col="darkgray")

shapiro.test(residuals(lmer.RMR))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(lmer.RMR)
## W = 0.99371, p-value = 0.01625
qqnorm(resid(lmer.RMR))
qqline(resid(lmer.RMR))

#model fit
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
plot_model(lmer.RMR, type = "diag")
## [[1]]
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]
## [[2]]$Paternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Chamber_ID
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Paternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## 
## [[3]]

## 
## [[4]]
## `geom_smooth()` using formula = 'y ~ x'

#outlier test
outlierTest(lmer.RMR)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
##     rstudent unadjusted p-value Bonferroni p
## 330 2.644477          0.0084141           NA
library(DHARMa)
## This is DHARMa 0.4.6. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')
plot(simulateResiduals(lmer.RMR))

model analysis

summary(lmer.RMR)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: RMR ~ Parental_treatment * Temp * Control_CO2 + (1 | Maternal_GF) +  
##     (1 | Maternal_GM) + (1 | Paternal_GF) + (1 | Paternal_GM) +  
##     (1 | Chamber_ID)
##    Data: Resp_data_summary
## 
## REML criterion at convergence: 5770.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4534 -0.7002  0.0215  0.6342  2.5825 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Paternal_GF (Intercept)   23.41   4.839  
##  Chamber_ID  (Intercept)  128.75  11.347  
##  Maternal_GF (Intercept)    0.00   0.000  
##  Paternal_GM (Intercept)   23.91   4.890  
##  Maternal_GM (Intercept)   18.74   4.329  
##  Residual                1512.25  38.888  
## Number of obs: 580, groups:  
## Paternal_GF, 5; Chamber_ID, 4; Maternal_GF, 4; Paternal_GM, 3; Maternal_GM, 3
## 
## Fixed effects:
##                                               Estimate Std. Error      df
## (Intercept)                                    231.979     10.374  10.867
## Parental_treatmentCCCH                         -10.194     10.710 468.349
## Parental_treatmentHHCC                           2.696     10.350 358.962
## Parental_treatmentCCHC                          -6.879     10.930  90.567
## Parental_treatmentHHHC                           2.700     11.035 388.777
## Tempzero                                         3.264      9.885 540.629
## Control_CO2CO                                   -8.800     10.242 548.326
## Parental_treatmentCCCH:Tempzero                  9.732     14.122 542.656
## Parental_treatmentHHCC:Tempzero                 -4.443     13.703 541.787
## Parental_treatmentCCHC:Tempzero                  3.309     13.930 541.037
## Parental_treatmentHHHC:Tempzero                -18.516     14.882 541.395
## Parental_treatmentCCCH:Control_CO2CO             4.844     14.838 549.387
## Parental_treatmentHHCC:Control_CO2CO             5.211     14.185 545.816
## Parental_treatmentCCHC:Control_CO2CO            -7.935     14.587 545.882
## Parental_treatmentHHHC:Control_CO2CO             5.923     15.132 546.173
## Tempzero:Control_CO2CO                          -3.510     14.378 548.063
## Parental_treatmentCCCH:Tempzero:Control_CO2CO   -5.029     20.221 546.269
## Parental_treatmentHHCC:Tempzero:Control_CO2CO   -5.960     19.911 544.605
## Parental_treatmentCCHC:Tempzero:Control_CO2CO   16.228     20.597 547.017
## Parental_treatmentHHHC:Tempzero:Control_CO2CO   17.053     21.330 547.596
##                                               t value Pr(>|t|)    
## (Intercept)                                    22.361 1.96e-10 ***
## Parental_treatmentCCCH                         -0.952    0.342    
## Parental_treatmentHHCC                          0.261    0.795    
## Parental_treatmentCCHC                         -0.629    0.531    
## Parental_treatmentHHHC                          0.245    0.807    
## Tempzero                                        0.330    0.741    
## Control_CO2CO                                  -0.859    0.391    
## Parental_treatmentCCCH:Tempzero                 0.689    0.491    
## Parental_treatmentHHCC:Tempzero                -0.324    0.746    
## Parental_treatmentCCHC:Tempzero                 0.238    0.812    
## Parental_treatmentHHHC:Tempzero                -1.244    0.214    
## Parental_treatmentCCCH:Control_CO2CO            0.326    0.744    
## Parental_treatmentHHCC:Control_CO2CO            0.367    0.714    
## Parental_treatmentCCHC:Control_CO2CO           -0.544    0.587    
## Parental_treatmentHHHC:Control_CO2CO            0.391    0.696    
## Tempzero:Control_CO2CO                         -0.244    0.807    
## Parental_treatmentCCCH:Tempzero:Control_CO2CO  -0.249    0.804    
## Parental_treatmentHHCC:Tempzero:Control_CO2CO  -0.299    0.765    
## Parental_treatmentCCHC:Tempzero:Control_CO2CO   0.788    0.431    
## Parental_treatmentHHHC:Tempzero:Control_CO2CO   0.799    0.424    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Anova(lmer.RMR)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: RMR
##                                      Chisq Df Pr(>Chisq)  
## Parental_treatment                  2.0037  4    0.73508  
## Temp                                0.3129  1    0.57593  
## Control_CO2                         4.9742  1    0.02573 *
## Parental_treatment:Temp             5.8496  4    0.21067  
## Parental_treatment:Control_CO2      2.4799  4    0.64823  
## Temp:Control_CO2                    0.0007  1    0.97954  
## Parental_treatment:Temp:Control_CO2 2.3768  4    0.66683  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#RMR
emmeans(lmer.RMR, pairwise ~ Control_CO2, adjust="tukey") 
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Control_CO2 emmean   SE   df lower.CL upper.CL
##  control        230 7.96 5.43      210      250
##  CO             224 8.03 5.49      203      244
## 
## Results are averaged over the levels of: Parental_treatment, Temp 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast     estimate   SE  df t.ratio p.value
##  control - CO     6.72 3.28 552   2.047  0.0411
## 
## Results are averaged over the levels of: Parental_treatment, Temp 
## Degrees-of-freedom method: kenward-roger
plot(emmeans(lmer.RMR, pairwise ~ Control_CO2, adjust="tukey") )
## NOTE: Results may be misleading due to involvement in interactions

emmeans(lmer.RMR, pairwise ~ Control_CO2 * Temp, adjust="tukey") 
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Control_CO2 Temp     emmean   SE   df lower.CL upper.CL
##  control     elevated    230 8.31 6.56      210      250
##  CO          elevated    222 8.35 6.61      202      242
##  control     zero        231 8.24 6.31      211      251
##  CO          zero        225 8.39 6.58      205      245
## 
## Results are averaged over the levels of: Parental_treatment 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                        estimate   SE  df t.ratio p.value
##  control elevated - CO elevated      7.19 4.69 551   1.534  0.4177
##  control elevated - control zero    -1.28 4.52 550  -0.283  0.9920
##  control elevated - CO zero          4.96 4.70 552   1.055  0.7168
##  CO elevated - control zero         -8.47 4.57 550  -1.856  0.2486
##  CO elevated - CO zero              -2.23 4.73 552  -0.471  0.9653
##  control zero - CO zero              6.24 4.57 552   1.366  0.5213
## 
## Results are averaged over the levels of: Parental_treatment 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
plot(emmeans(lmer.RMR, pairwise ~ Control_CO2 * Temp, adjust="tukey") )
## NOTE: Results may be misleading due to involvement in interactions

#for graphs
RMREMM = (emmeans(lmer.RMR, ~ Parental_treatment * Temp * Control_CO2 ) %>% as.data.frame)
RMREMM
##  Parental_treatment Temp     Control_CO2   emmean       SE    df lower.CL
##  CCCC               elevated control     231.9794 10.97763 17.50 208.8691
##  CCCH               elevated control     221.7853 11.66007 19.96 197.4594
##  HHCC               elevated control     234.6757 11.04371 15.89 211.2503
##  CCHC               elevated control     225.1003 11.46637 15.82 200.7704
##  HHHC               elevated control     234.6797 11.59048 22.92 210.6983
##  CCCC               zero     control     235.2432 10.84004 16.56 212.3263
##  CCCH               zero     control     234.7815 10.93576 15.09 211.4844
##  HHCC               zero     control     233.4967 10.62413 13.50 210.6314
##  CCHC               zero     control     231.6728 11.51770 16.22 207.2838
##  HHHC               zero     control     219.4276 11.55305 22.08 195.4729
##  CCCC               elevated CO          223.1793 11.23083 18.85 199.6604
##  CCCH               elevated CO          217.8294 11.46491 19.14 193.8453
##  HHCC               elevated CO          231.0864 10.96434 15.37 207.7649
##  CCHC               elevated CO          208.3649 11.88278 20.28 183.5998
##  HHHC               elevated CO          231.8029 11.49858 22.13 207.9643
##  CCCC               zero     CO          222.9332 11.16718 18.57 199.5235
##  CCCH               zero     CO          222.2871 10.99119 15.44 198.9175
##  HHCC               zero     CO          220.4380 11.29146 16.88 196.6019
##  CCHC               zero     CO          227.6552 12.11643 19.56 202.3446
##  HHHC               zero     CO          230.0937 11.53505 22.93 206.2276
##  upper.CL
##  255.0897
##  246.1112
##  258.1011
##  249.4302
##  258.6611
##  258.1601
##  258.0786
##  256.3621
##  256.0618
##  243.3823
##  246.6982
##  241.8136
##  254.4079
##  233.1300
##  255.6415
##  246.3429
##  245.6568
##  244.2740
##  252.9658
##  253.9599
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
#combine column for x axis
RMREMM_graph <- RMREMM %>%  
 unite(Temp:Control_CO2 , col="Juv_treat", sep="_", remove=FALSE)
RMREMM_graph
##    Parental_treatment        Juv_treat     Temp Control_CO2   emmean       SE
## 1                CCCC elevated_control elevated     control 231.9794 10.97763
## 2                CCCH elevated_control elevated     control 221.7853 11.66007
## 3                HHCC elevated_control elevated     control 234.6757 11.04371
## 4                CCHC elevated_control elevated     control 225.1003 11.46637
## 5                HHHC elevated_control elevated     control 234.6797 11.59048
## 6                CCCC     zero_control     zero     control 235.2432 10.84004
## 7                CCCH     zero_control     zero     control 234.7815 10.93576
## 8                HHCC     zero_control     zero     control 233.4967 10.62413
## 9                CCHC     zero_control     zero     control 231.6728 11.51770
## 10               HHHC     zero_control     zero     control 219.4276 11.55305
## 11               CCCC      elevated_CO elevated          CO 223.1793 11.23083
## 12               CCCH      elevated_CO elevated          CO 217.8294 11.46491
## 13               HHCC      elevated_CO elevated          CO 231.0864 10.96434
## 14               CCHC      elevated_CO elevated          CO 208.3649 11.88278
## 15               HHHC      elevated_CO elevated          CO 231.8029 11.49858
## 16               CCCC          zero_CO     zero          CO 222.9332 11.16718
## 17               CCCH          zero_CO     zero          CO 222.2872 10.99119
## 18               HHCC          zero_CO     zero          CO 220.4379 11.29146
## 19               CCHC          zero_CO     zero          CO 227.6552 12.11643
## 20               HHHC          zero_CO     zero          CO 230.0937 11.53505
##          df lower.CL upper.CL
## 1  17.50189 208.8691 255.0897
## 2  19.95633 197.4594 246.1112
## 3  15.88507 211.2503 258.1011
## 4  15.82141 200.7704 249.4302
## 5  22.91941 210.6983 258.6611
## 6  16.55948 212.3263 258.1601
## 7  15.08838 211.4844 258.0786
## 8  13.50359 210.6314 256.3621
## 9  16.22441 207.2838 256.0618
## 10 22.07785 195.4729 243.3823
## 11 18.85200 199.6604 246.6982
## 12 19.14363 193.8453 241.8136
## 13 15.36647 207.7649 254.4079
## 14 20.28039 183.5998 233.1300
## 15 22.12769 207.9643 255.6415
## 16 18.57230 199.5235 246.3429
## 17 15.43633 198.9175 245.6568
## 18 16.87814 196.6019 244.2740
## 19 19.56342 202.3446 252.9658
## 20 22.92955 206.2276 253.9599

plot modeled data

#Plot#
cbPalette <- c("#56B4E9", "#E69F00", "#D55E00","#009E73", "#999999")                 


#better labels#
graph <- ggplot(RMREMM_graph, aes (x = Juv_treat,  y=emmean, colour=Parental_treatment)) + geom_pointrange(aes (ymin = emmean-SE, ymax = emmean+SE), position=position_dodge(width=1), size=1)  +  
  
  facet_grid(~factor(Juv_treat, levels =c( "zero_control","elevated_control", "zero_CO", "elevated_CO"), labels=str_wrap(c("Control",  "Elevated Temperature",  "Elevated CO2", "Elevated Temperature & CO2"), width = 10)), scales = "free_x") + labs(x="Juvenile treatment", y=expression("Resting oxygen consumption (mg O"[2]*" kg"^{-1}*" hr"^{-1}*")")) +
  
   scale_x_discrete(breaks = c("zero_control","elevated_control", "zero_CO", "elevated_CO"), 
     labels = str_wrap(
     c("Control",  "Warm temperature",  "Elevated CO2", "Warm temperature & Elevated CO2"), width = 10)
     ) + 
  
  scale_colour_manual(values=cbPalette, name = "Cross-generation experience", labels = c("Control", "Parental development", "Grandparental development", "Grandparental post-maturation", "Continuous grandparent")) +
 
 theme_calc() + theme(text = element_text(size=20)) + theme(panel.spacing = unit(1, "cm", data = NULL)) +  theme_classic()+ theme(strip.text.x = element_blank()) 


print(graph)

#CO2 only pointrange graph 
RMREMMCO = (emmeans(lmer.RMR, ~  Control_CO2 ) %>% as.data.frame)
## NOTE: Results may be misleading due to involvement in interactions
RMREMMCO
##  Control_CO2   emmean       SE   df lower.CL upper.CL
##  control     230.2842 7.961933 5.43 210.2952 250.2732
##  CO          223.5670 8.030510 5.49 203.4682 243.6658
## 
## Results are averaged over the levels of: Parental_treatment, Temp 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
co2graph <- ggplot(RMREMMCO, aes (x = factor(Control_CO2,level=c("control", "CO")), y=emmean, colour=Control_CO2)) + geom_pointrange(aes (ymin = emmean-SE, ymax = emmean+SE), position=position_dodge(width=1), size=1)  +  
   labs(x=expression("CO"[2]*" developmental treatment"), y=expression("Resting oxygen consumption (mg O"[2]*" kg"^{-1}*" hr"^{-1}*")"))+
  scale_x_discrete(breaks = c("control", "CO"),  labels = str_wrap( c("Control", "Elevated CO2"), width = 10)  ) + 
 theme_calc() + theme(text = element_text(size=20)) + theme(panel.spacing = unit(1, "cm", data = NULL)) +
  theme_classic()+ theme(strip.text.x = element_blank()) + 
  scale_colour_manual(values=c("control" = "black", "CO" = "tan"), name = expression("CO"[2]*" developmental treatment"), limits = c("control", "CO"), labels = c("Control", "Elevated CO2"))


print(co2graph)

ggsave("RMR_co2graph.eps", co2graph, height = 6, width = 14, dpi = 320)

MMR

Exploring raw data

ggplot(Resp_data_summary, aes(y=MMR, x=Age)) + geom_point()

ggplot(Resp_data_summary, aes(y=MMR, x=Weight)) + geom_point()

ggplot(Resp_data_summary, aes(y=MMR, x=Juv_treat, colour=Parental_treatment)) + geom_boxplot()

Raw data checks

qqPlot(Resp_data_summary$MMR)

## [1] 135 296
shapiro.test(Resp_data_summary$MMR)
## 
##  Shapiro-Wilk normality test
## 
## data:  Resp_data_summary$MMR
## W = 0.9772, p-value = 7.445e-08
nortest::lillie.test(Resp_data_summary$MMR)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Resp_data_summary$MMR
## D = 0.050961, p-value = 0.001084
leveneTest(MMR ~ Parental_treatment * Temp * Control_CO2, data = Resp_data_summary)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group  19  0.9229 0.5542
##       560
kurtosis(Resp_data_summary$MMR)
## [1] 2.639684

model

lmer.MMR = lmer(MMR~ Parental_treatment * Temp * Control_CO2 + (1 | Maternal_GF) +  (1 | Maternal_GM)   + (1 | Paternal_GF) +(1 | Paternal_GM) +  (1 | Chamber_ID ) , data = Resp_data_summary)
## boundary (singular) fit: see help('isSingular')

post model checks

performance::check_model(lmer.MMR, check="homogeneity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.MMR, check="outliers") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.MMR, check="qq") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.MMR, check="normality") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.MMR, check="linearity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.MMR, check="pp_check")
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

#Homogeneity
plot(lmer.MMR)

#normality
hist(residuals(lmer.MMR), col="darkgray")

shapiro.test(residuals(lmer.MMR))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(lmer.MMR)
## W = 0.98882, p-value = 0.0002085
qqnorm(resid(lmer.MMR))
qqline(resid(lmer.MMR))

#model fit
library(sjPlot)
plot_model(lmer.MMR, type = "diag")
## [[1]]
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]
## [[2]]$Paternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Chamber_ID
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Paternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## 
## [[3]]

## 
## [[4]]
## `geom_smooth()` using formula = 'y ~ x'

#outlier test
outlierTest(lmer.MMR)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
##     rstudent unadjusted p-value Bonferroni p
## 167 3.041723          0.0024638           NA
library(DHARMa)
plot(simulateResiduals(lmer.MMR))

model analysis

summary(lmer.MMR)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: MMR ~ Parental_treatment * Temp * Control_CO2 + (1 | Maternal_GF) +  
##     (1 | Maternal_GM) + (1 | Paternal_GF) + (1 | Paternal_GM) +  
##     (1 | Chamber_ID)
##    Data: Resp_data_summary
## 
## REML criterion at convergence: 7100.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1441 -0.6618 -0.1142  0.6503  2.9866 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Paternal_GF (Intercept)     0      0.00  
##  Chamber_ID  (Intercept)  7032     83.85  
##  Maternal_GF (Intercept)     0      0.00  
##  Paternal_GM (Intercept)     0      0.00  
##  Maternal_GM (Intercept)   463     21.52  
##  Residual                16215    127.34  
## Number of obs: 580, groups:  
## Paternal_GF, 5; Chamber_ID, 4; Maternal_GF, 4; Paternal_GM, 3; Maternal_GM, 3
## 
## Fixed effects:
##                                               Estimate Std. Error       df
## (Intercept)                                    645.560     49.766    5.638
## Parental_treatmentCCCH                           2.155     34.140  555.415
## Parental_treatmentHHCC                          38.336     33.298  546.108
## Parental_treatmentCCHC                          25.009     34.379  397.129
## Parental_treatmentHHHC                         127.398     35.143  556.795
## Tempzero                                        -1.992     32.363  555.249
## Control_CO2CO                                   80.643     33.462  555.249
## Parental_treatmentCCCH:Tempzero                 46.014     46.210  555.318
## Parental_treatmentHHCC:Tempzero                -18.518     44.851  555.294
## Parental_treatmentCCHC:Tempzero                -16.093     45.604  555.288
## Parental_treatmentHHHC:Tempzero               -135.237     48.716  555.334
## Parental_treatmentCCCH:Control_CO2CO           -64.258     48.455  555.342
## Parental_treatmentHHCC:Control_CO2CO           -97.733     46.389  555.270
## Parental_treatmentCCHC:Control_CO2CO           -80.468     47.699  555.261
## Parental_treatmentHHHC:Control_CO2CO          -197.224     49.480  555.313
## Tempzero:Control_CO2CO                         -88.023     46.969  555.253
## Parental_treatmentCCCH:Tempzero:Control_CO2CO   41.206     66.110  555.254
## Parental_treatmentHHCC:Tempzero:Control_CO2CO   84.979     65.124  555.361
## Parental_treatmentCCHC:Tempzero:Control_CO2CO  131.545     67.334  555.308
## Parental_treatmentHHHC:Tempzero:Control_CO2CO  238.484     69.714  555.408
##                                               t value Pr(>|t|)    
## (Intercept)                                    12.972 2.06e-05 ***
## Parental_treatmentCCCH                          0.063 0.949698    
## Parental_treatmentHHCC                          1.151 0.250107    
## Parental_treatmentCCHC                          0.727 0.467368    
## Parental_treatmentHHHC                          3.625 0.000315 ***
## Tempzero                                       -0.062 0.950938    
## Control_CO2CO                                   2.410 0.016278 *  
## Parental_treatmentCCCH:Tempzero                 0.996 0.319801    
## Parental_treatmentHHCC:Tempzero                -0.413 0.679853    
## Parental_treatmentCCHC:Tempzero                -0.353 0.724299    
## Parental_treatmentHHHC:Tempzero                -2.776 0.005689 ** 
## Parental_treatmentCCCH:Control_CO2CO           -1.326 0.185342    
## Parental_treatmentHHCC:Control_CO2CO           -2.107 0.035580 *  
## Parental_treatmentCCHC:Control_CO2CO           -1.687 0.092163 .  
## Parental_treatmentHHHC:Control_CO2CO           -3.986 7.62e-05 ***
## Tempzero:Control_CO2CO                         -1.874 0.061448 .  
## Parental_treatmentCCCH:Tempzero:Control_CO2CO   0.623 0.533343    
## Parental_treatmentHHCC:Tempzero:Control_CO2CO   1.305 0.192477    
## Parental_treatmentCCHC:Tempzero:Control_CO2CO   1.954 0.051248 .  
## Parental_treatmentHHHC:Tempzero:Control_CO2CO   3.421 0.000670 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Anova(lmer.MMR)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: MMR
##                                       Chisq Df Pr(>Chisq)   
## Parental_treatment                   1.5963  4   0.809455   
## Temp                                 3.5096  1   0.061014 . 
## Control_CO2                          0.0272  1   0.868980   
## Parental_treatment:Temp              7.5152  4   0.111042   
## Parental_treatment:Control_CO2       6.6014  4   0.158513   
## Temp:Control_CO2                     0.0691  1   0.792723   
## Parental_treatment:Temp:Control_CO2 13.8028  4   0.007952 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#MMR
emmeans(lmer.MMR, pairwise ~ Temp, adjust="tukey") 
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Temp     emmean   SE   df lower.CL upper.CL
##  elevated    680 45.2 3.59      549      812
##  zero        659 45.2 3.57      528      791
## 
## Results are averaged over the levels of: Parental_treatment, Control_CO2 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast        estimate   SE  df t.ratio p.value
##  elevated - zero     21.1 10.7 553   1.972  0.0491
## 
## Results are averaged over the levels of: Parental_treatment, Control_CO2 
## Degrees-of-freedom method: kenward-roger
plot(emmeans(lmer.MMR, pairwise ~ Temp, adjust="tukey") )
## NOTE: Results may be misleading due to involvement in interactions

emmeans(lmer.MMR, pairwise ~ Temp*Parental_treatment) 
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Temp     Parental_treatment emmean   SE   df lower.CL upper.CL
##  elevated CCCC                  686 48.6 4.51      557      815
##  zero     CCCC                  640 48.4 4.47      511      769
##  elevated CCCH                  656 49.4 4.61      526      786
##  zero     CCCH                  677 48.6 4.32      545      808
##  elevated HHCC                  675 48.7 4.42      545      806
##  zero     HHCC                  653 48.8 4.39      522      784
##  elevated CCHC                  671 49.9 4.62      539      802
##  zero     CCHC                  674 50.2 4.62      542      807
##  elevated HHHC                  715 49.2 4.64      585      844
##  zero     HHHC                  653 49.2 4.64      523      782
## 
## Results are averaged over the levels of: Control_CO2 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                      estimate   SE    df t.ratio p.value
##  elevated CCCC - zero CCCC        46.00 23.5 552.8   1.954  0.6319
##  elevated CCCC - elevated CCCH    29.97 27.7 169.2   1.082  0.9858
##  elevated CCCC - zero CCCH         9.36 26.3 162.2   0.356  1.0000
##  elevated CCCC - elevated HHCC    10.53 30.0  71.7   0.351  1.0000
##  elevated CCCC - zero HHCC        32.56 30.6  55.5   1.063  0.9863
##  elevated CCCC - elevated CCHC    15.22 35.4  51.5   0.430  1.0000
##  elevated CCCC - zero CCHC        11.55 36.0  48.7   0.320  1.0000
##  elevated CCCC - elevated HHHC   -28.79 29.3  61.0  -0.983  0.9922
##  elevated CCCC - zero HHHC        33.21 29.3  60.8   1.134  0.9790
##  zero CCCC - elevated CCCH       -16.03 27.3 161.2  -0.588  0.9999
##  zero CCCC - zero CCCH           -36.64 25.8 160.1  -1.422  0.9186
##  zero CCCC - elevated HHCC       -35.47 29.2  85.8  -1.214  0.9681
##  zero CCCC - zero HHCC           -13.44 29.8  65.7  -0.451  1.0000
##  zero CCCC - elevated CCHC       -30.78 34.8  56.5  -0.884  0.9964
##  zero CCCC - zero CCHC           -34.45 35.4  53.9  -0.973  0.9926
##  zero CCCC - elevated HHHC       -74.79 28.5  80.8  -2.629  0.2217
##  zero CCCC - zero HHHC           -12.79 28.4  80.4  -0.450  1.0000
##  elevated CCCH - zero CCCH       -20.61 23.3 552.5  -0.883  0.9969
##  elevated CCCH - elevated HHCC   -19.44 29.6  70.6  -0.656  0.9997
##  elevated CCCH - zero HHCC         2.59 29.9  61.6   0.087  1.0000
##  elevated CCCH - elevated CCHC   -14.75 34.8  53.4  -0.423  1.0000
##  elevated CCCH - zero CCHC       -18.42 35.3  49.9  -0.522  0.9999
##  elevated CCCH - elevated HHHC   -58.76 30.3  22.5  -1.937  0.6468
##  elevated CCCH - zero HHHC         3.24 30.3  22.5   0.107  1.0000
##  zero CCCH - elevated HHCC         1.17 27.6  68.3   0.042  1.0000
##  zero CCCH - zero HHCC            23.20 27.9  57.5   0.832  0.9977
##  zero CCCH - elevated CCHC         5.86 33.3  49.0   0.176  1.0000
##  zero CCCH - zero CCHC             2.19 33.7  46.6   0.065  1.0000
##  zero CCCH - elevated HHHC       -38.15 28.9  20.8  -1.321  0.9373
##  zero CCCH - zero HHHC            23.85 28.9  20.7   0.826  0.9972
##  elevated HHCC - zero HHCC        22.03 22.6 553.0   0.975  0.9935
##  elevated HHCC - elevated CCHC     4.69 27.0 247.8   0.174  1.0000
##  elevated HHCC - zero CCHC         1.02 27.3 249.1   0.037  1.0000
##  elevated HHCC - elevated HHHC   -39.32 29.4 120.1  -1.335  0.9433
##  elevated HHCC - zero HHHC        22.68 29.4 120.1   0.771  0.9989
##  zero HHCC - elevated CCHC       -17.34 26.7 281.5  -0.649  0.9997
##  zero HHCC - zero CCHC           -21.01 26.9 282.9  -0.782  0.9988
##  zero HHCC - elevated HHHC       -61.35 29.7 112.0  -2.069  0.5532
##  zero HHCC - zero HHHC             0.65 29.6 111.9   0.022  1.0000
##  elevated CCHC - zero CCHC        -3.68 24.2 552.2  -0.152  1.0000
##  elevated CCHC - elevated HHHC   -44.01 32.9  42.1  -1.338  0.9385
##  elevated CCHC - zero HHHC        17.99 32.9  42.1   0.547  0.9999
##  zero CCHC - elevated HHHC       -40.34 33.4  41.0  -1.208  0.9668
##  zero CCHC - zero HHHC            21.66 33.4  40.9   0.649  0.9997
##  elevated HHHC - zero HHHC        62.00 25.7 550.9   2.409  0.3224
## 
## Results are averaged over the levels of: Control_CO2 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 10 estimates
plot(emmeans(lmer.MMR, pairwise ~ Temp*Parental_treatment) )
## NOTE: Results may be misleading due to involvement in interactions

emmeans(lmer.MMR, pairwise ~ Control_CO2* Temp, adjust="tukey") 
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Control_CO2 Temp     emmean   SE   df lower.CL upper.CL
##  control     elevated    684 45.8 3.79      554      814
##  CO          elevated    677 45.8 3.81      547      807
##  control     zero        657 45.7 3.75      527      788
##  CO          zero        661 46.0 3.81      531      791
## 
## Results are averaged over the levels of: Parental_treatment 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                        estimate   SE  df t.ratio p.value
##  control elevated - CO elevated      7.29 15.4 554   0.475  0.9647
##  control elevated - control zero    26.76 14.8 552   1.809  0.2700
##  control elevated - CO zero         22.83 15.4 553   1.481  0.4496
##  CO elevated - control zero         19.47 15.0 552   1.301  0.5624
##  CO elevated - CO zero              15.54 15.5 554   1.003  0.7479
##  control zero - CO zero             -3.93 15.0 553  -0.262  0.9937
## 
## Results are averaged over the levels of: Parental_treatment 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
plot(emmeans(lmer.MMR, pairwise ~ Control_CO2*Temp, adjust="tukey") )
## NOTE: Results may be misleading due to involvement in interactions

emmeans(lmer.MMR, pairwise ~ Parental_treatment * Temp * Control_CO2, adjust="tukey") 
## $emmeans
##  Parental_treatment Temp     Control_CO2 emmean   SE   df lower.CL upper.CL
##  CCCC               elevated control        646 51.2 5.63      518      773
##  CCCH               elevated control        648 53.0 6.00      518      777
##  HHCC               elevated control        684 51.4 5.56      556      812
##  CCHC               elevated control        671 52.2 5.57      540      801
##  HHHC               elevated control        773 52.5 6.18      645      901
##  CCCC               zero     control        644 50.8 5.48      516      771
##  CCCH               zero     control        692 50.9 5.27      563      821
##  HHCC               zero     control        663 50.5 5.17      535      792
##  CCHC               zero     control        652 52.3 5.65      523      782
##  HHHC               zero     control        636 52.5 6.05      508      764
##  CCCC               elevated CO             726 51.7 5.80      599      854
##  CCCH               elevated CO             664 52.0 5.91      536      792
##  HHCC               elevated CO             667 51.3 5.48      538      795
##  CCHC               elevated CO             671 53.2 6.22      542      800
##  HHHC               elevated CO             656 52.4 6.04      528      784
##  CCCC               zero     CO             636 51.5 5.81      509      763
##  CCCH               zero     CO             661 51.0 5.34      533      790
##  HHCC               zero     CO             643 52.1 5.74      514      772
##  CCHC               zero     CO             696 53.8 6.17      565      827
##  HHHC               zero     CO             670 52.4 6.16      542      797
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                                      estimate   SE    df t.ratio
##  CCCC elevated control - CCCH elevated control   -2.155 37.6 256.2  -0.057
##  CCCC elevated control - HHCC elevated control  -38.336 37.5 203.6  -1.021
##  CCCC elevated control - CCHC elevated control  -25.009 42.0 129.8  -0.595
##  CCCC elevated control - HHHC elevated control -127.398 37.7 266.8  -3.382
##  CCCC elevated control - CCCC zero control        1.992 32.4 551.4   0.062
##  CCCC elevated control - CCCH zero control      -46.177 34.4 326.6  -1.343
##  CCCC elevated control - HHCC zero control      -17.826 36.9 164.1  -0.483
##  CCCC elevated control - CCHC zero control       -6.924 42.0 136.8  -0.165
##  CCCC elevated control - HHHC zero control        9.831 37.6 220.8   0.261
##  CCCC elevated control - CCCC elevated CO       -80.643 33.6 550.9  -2.402
##  CCCC elevated control - CCCH elevated CO       -18.540 35.7 434.6  -0.519
##  CCCC elevated control - HHCC elevated CO       -21.246 37.8 179.0  -0.562
##  CCCC elevated control - CCHC elevated CO       -25.184 43.1 154.0  -0.585
##  CCCC elevated control - HHHC elevated CO       -10.816 37.8 225.4  -0.286
##  CCCC elevated control - CCCC zero CO             9.373 33.6 551.8   0.279
##  CCCC elevated control - CCCH zero CO           -15.745 34.5 351.8  -0.456
##  CCCC elevated control - HHCC zero CO             2.309 39.2 151.2   0.059
##  CCCC elevated control - CCHC zero CO           -50.619 44.2 132.9  -1.145
##  CCCC elevated control - HHHC zero CO           -24.048 37.9 270.2  -0.635
##  CCCH elevated control - HHCC elevated control  -36.182 39.2 151.1  -0.923
##  CCCH elevated control - CCHC elevated control  -22.855 42.9 109.2  -0.533
##  CCCH elevated control - HHHC elevated control -125.243 40.3  70.8  -3.110
##  CCCH elevated control - CCCC zero control        4.147 37.2 253.2   0.111
##  CCCH elevated control - CCCH zero control      -44.022 33.2 554.1  -1.327
##  CCCH elevated control - HHCC zero control      -15.671 38.0 140.1  -0.413
##  CCCH elevated control - CCHC zero control       -4.769 43.2 114.4  -0.110
##  CCCH elevated control - HHHC zero control       11.986 40.0  61.7   0.300
##  CCCH elevated control - CCCC elevated CO       -78.488 38.1 285.0  -2.059
##  CCCH elevated control - CCCH elevated CO       -16.385 35.5 554.0  -0.462
##  CCCH elevated control - HHCC elevated CO       -19.091 39.1 142.3  -0.488
##  CCCH elevated control - CCHC elevated CO       -23.029 44.3 132.5  -0.520
##  CCCH elevated control - HHHC elevated CO        -8.662 40.3  62.5  -0.215
##  CCCH elevated control - CCCC zero CO            11.528 37.6 267.9   0.306
##  CCCH elevated control - CCCH zero CO           -13.590 33.6 554.5  -0.405
##  CCCH elevated control - HHCC zero CO             4.463 40.4 129.0   0.111
##  CCCH elevated control - CCHC zero CO           -48.465 44.9 109.6  -1.080
##  CCCH elevated control - HHHC zero CO           -21.894 40.5  71.3  -0.540
##  HHCC elevated control - CCHC elevated control   13.327 35.1 384.2   0.379
##  HHCC elevated control - HHHC elevated control  -89.061 38.4 299.2  -2.321
##  HHCC elevated control - CCCC zero control       40.329 37.0 203.0   1.089
##  HHCC elevated control - CCCH zero control       -7.840 35.6 197.3  -0.220
##  HHCC elevated control - HHCC zero control       20.510 31.1 552.6   0.659
##  HHCC elevated control - CCHC zero control       31.413 35.3 425.0   0.889
##  HHCC elevated control - HHHC zero control       48.168 38.2 289.2   1.260
##  HHCC elevated control - CCCC elevated CO       -42.306 38.1 231.3  -1.109
##  HHCC elevated control - CCCH elevated CO        19.797 37.0 286.2   0.535
##  HHCC elevated control - HHCC elevated CO        17.090 32.2 551.9   0.531
##  HHCC elevated control - CCHC elevated CO        13.153 36.9 423.5   0.357
##  HHCC elevated control - HHHC elevated CO        27.520 38.0 297.8   0.724
##  HHCC elevated control - CCCC zero CO            47.709 37.2 291.4   1.281
##  HHCC elevated control - CCCH zero CO            22.592 35.4 224.8   0.639
##  HHCC elevated control - HHCC zero CO            40.645 33.1 554.0   1.227
##  HHCC elevated control - CCHC zero CO           -12.283 37.2 382.8  -0.330
##  HHCC elevated control - HHHC zero CO            14.288 38.2 310.4   0.374
##  CCHC elevated control - HHHC elevated control -102.388 40.9 124.5  -2.505
##  CCHC elevated control - CCCC zero control       27.002 41.5 122.8   0.651
##  CCHC elevated control - CCCH zero control      -21.167 39.8 121.2  -0.532
##  CCHC elevated control - HHCC zero control        7.183 33.5 415.0   0.214
##  CCHC elevated control - CCHC zero control       18.086 32.1 551.6   0.563
##  CCHC elevated control - HHHC zero control       34.841 40.7 110.6   0.855
##  CCHC elevated control - CCCC elevated CO       -55.633 42.4 132.6  -1.312
##  CCHC elevated control - CCCH elevated CO         6.470 41.0 166.8   0.158
##  CCHC elevated control - HHCC elevated CO         3.763 34.7 422.7   0.109
##  CCHC elevated control - CCHC elevated CO        -0.174 34.1 552.3  -0.005
##  CCHC elevated control - HHHC elevated CO        14.193 40.3 110.7   0.352
##  CCHC elevated control - CCCC zero CO            34.382 41.7 162.7   0.825
##  CCHC elevated control - CCCH zero CO             9.265 39.6 133.9   0.234
##  CCHC elevated control - HHCC zero CO            27.318 35.4 437.8   0.771
##  CCHC elevated control - CCHC zero CO           -25.610 34.1 552.2  -0.750
##  CCHC elevated control - HHHC zero CO             0.961 40.4 124.9   0.024
##  HHHC elevated control - CCCC zero control      129.390 37.5 215.5   3.453
##  HHHC elevated control - CCCH zero control       81.221 37.5  74.0   2.168
##  HHHC elevated control - HHCC zero control      109.571 37.4 269.4   2.930
##  HHHC elevated control - CCHC zero control      120.474 41.1 141.6   2.934
##  HHHC elevated control - HHHC zero control      137.229 36.4 551.5   3.767
##  HHHC elevated control - CCCC elevated CO        46.755 38.9 150.8   1.202
##  HHHC elevated control - CCCH elevated CO       108.858 38.9 100.9   2.798
##  HHHC elevated control - HHCC elevated CO       106.151 38.4 283.6   2.764
##  HHHC elevated control - CCHC elevated CO       102.214 42.2 154.5   2.420
##  HHHC elevated control - HHHC elevated CO       116.581 36.5 551.7   3.194
##  HHHC elevated control - CCCC zero CO           136.770 37.7 280.5   3.628
##  HHHC elevated control - CCCH zero CO           111.653 37.5  83.9   2.978
##  HHHC elevated control - HHCC zero CO           129.706 39.6 279.9   3.279
##  HHHC elevated control - CCHC zero CO            76.778 43.1 130.4   1.781
##  HHHC elevated control - HHHC zero CO           103.349 36.8 551.3   2.806
##  CCCC zero control - CCCH zero control          -48.169 34.0 320.2  -1.418
##  CCCC zero control - HHCC zero control          -19.818 36.4 158.5  -0.545
##  CCCC zero control - CCHC zero control           -8.916 41.5 130.1  -0.215
##  CCCC zero control - HHHC zero control            7.839 37.5 175.7   0.209
##  CCCC zero control - CCCC elevated CO           -82.635 33.0 552.0  -2.503
##  CCCC zero control - CCCH elevated CO           -20.532 35.3 434.6  -0.582
##  CCCC zero control - HHCC elevated CO           -23.238 37.3 175.8  -0.623
##  CCCC zero control - CCHC elevated CO           -27.176 42.6 145.6  -0.638
##  CCCC zero control - HHHC elevated CO           -12.808 37.7 179.9  -0.340
##  CCCC zero control - CCCC zero CO                 7.381 33.1 552.1   0.223
##  CCCC zero control - CCCH zero CO               -17.737 34.1 343.2  -0.520
##  CCCC zero control - HHCC zero CO                 0.317 38.7 147.1   0.008
##  CCCC zero control - CCHC zero CO               -52.611 43.7 127.8  -1.203
##  CCCC zero control - HHHC zero CO               -26.040 37.7 218.9  -0.691
##  CCCH zero control - HHCC zero control           28.351 34.4 174.5   0.824
##  CCCH zero control - CCHC zero control           39.253 40.0 127.7   0.981
##  CCCH zero control - HHHC zero control           56.008 37.2  63.2   1.505
##  CCCH zero control - CCCC elevated CO           -34.466 34.9 353.8  -0.986
##  CCCH zero control - CCCH elevated CO            27.637 32.7 552.7   0.844
##  CCCH zero control - HHCC elevated CO            24.931 35.6 180.3   0.700
##  CCCH zero control - CCHC elevated CO            20.993 41.2 143.8   0.509
##  CCCH zero control - HHHC elevated CO            35.360 37.4  63.9   0.945
##  CCCH zero control - CCCC zero CO                55.550 34.4 344.9   1.614
##  CCCH zero control - CCCH zero CO                30.432 30.7 551.8   0.991
##  CCCH zero control - HHCC zero CO                48.485 36.9 158.5   1.313
##  CCCH zero control - CCHC zero CO                -4.443 41.9 124.6  -0.106
##  CCCH zero control - HHHC zero CO                22.128 37.7  74.5   0.588
##  HHCC zero control - CCHC zero control           10.902 33.8 444.7   0.323
##  HHCC zero control - HHHC zero control           27.658 37.2 258.9   0.744
##  HHCC zero control - CCCC elevated CO           -62.816 37.5 182.6  -1.675
##  HHCC zero control - CCCH elevated CO            -0.714 36.0 255.3  -0.020
##  HHCC zero control - HHCC elevated CO            -3.420 30.8 551.2  -0.111
##  HHCC zero control - CCHC elevated CO            -7.357 35.4 452.6  -0.208
##  HHCC zero control - HHHC elevated CO             7.010 36.9 265.6   0.190
##  HHCC zero control - CCCC zero CO                27.199 36.5 242.2   0.745
##  HHCC zero control - CCCH zero CO                 2.082 34.2 196.5   0.061
##  HHCC zero control - HHCC zero CO                20.135 31.7 553.0   0.635
##  HHCC zero control - CCHC zero CO               -32.793 35.6 416.3  -0.921
##  HHCC zero control - HHHC zero CO                -6.222 37.1 278.3  -0.168
##  CCHC zero control - HHHC zero control           16.755 40.9 125.2   0.410
##  CCHC zero control - CCCC elevated CO           -73.719 42.4 141.5  -1.738
##  CCHC zero control - CCCH elevated CO           -11.616 41.2 175.4  -0.282
##  CCHC zero control - HHCC elevated CO           -14.322 34.9 451.3  -0.410
##  CCHC zero control - CCHC elevated CO           -18.260 34.3 552.4  -0.532
##  CCHC zero control - HHHC elevated CO            -3.892 40.4 125.2  -0.096
##  CCHC zero control - CCCC zero CO                16.297 41.7 173.2   0.391
##  CCHC zero control - CCCH zero CO                -8.821 39.9 141.4  -0.221
##  CCHC zero control - HHCC zero CO                 9.233 35.7 454.5   0.258
##  CCHC zero control - CCHC zero CO               -43.696 34.4 553.2  -1.269
##  CCHC zero control - HHHC zero CO               -17.124 40.6 141.9  -0.422
##  HHHC zero control - CCCC elevated CO           -90.474 38.9 123.1  -2.326
##  HHHC zero control - CCCH elevated CO           -28.371 38.7  86.6  -0.732
##  HHHC zero control - HHCC elevated CO           -31.078 38.2 274.6  -0.813
##  HHHC zero control - CCHC elevated CO           -35.015 42.1 137.8  -0.831
##  HHHC zero control - HHHC elevated CO           -20.648 36.1 551.3  -0.572
##  HHHC zero control - CCCC zero CO                -0.458 37.6 234.6  -0.012
##  HHHC zero control - CCCH zero CO               -25.576 37.3  72.1  -0.686
##  HHHC zero control - HHCC zero CO                -7.523 39.4 276.8  -0.191
##  HHHC zero control - CCHC zero CO               -60.451 42.9 117.8  -1.408
##  HHHC zero control - HHHC zero CO               -33.880 36.5 552.1  -0.928
##  CCCC elevated CO - CCCH elevated CO             62.103 36.2 459.3   1.714
##  CCCC elevated CO - HHCC elevated CO             59.396 38.4 200.4   1.548
##  CCCC elevated CO - CCHC elevated CO             55.459 43.5 156.1   1.275
##  CCCC elevated CO - HHHC elevated CO             69.826 39.1 126.1   1.788
##  CCCC elevated CO - CCCC zero CO                 90.016 34.3 552.9   2.627
##  CCCC elevated CO - CCCH zero CO                 64.898 35.1 369.6   1.848
##  CCCC elevated CO - HHCC zero CO                 82.951 39.8 167.7   2.086
##  CCCC elevated CO - CCHC zero CO                 30.023 44.6 136.0   0.673
##  CCCC elevated CO - HHHC zero CO                 56.594 39.1 153.6   1.449
##  CCCH elevated CO - HHCC elevated CO             -2.706 37.0 261.4  -0.073
##  CCCH elevated CO - CCHC elevated CO             -6.644 42.4 187.6  -0.157
##  CCCH elevated CO - HHHC elevated CO              7.723 39.0  88.1   0.198
##  CCCH elevated CO - CCCC zero CO                 27.913 35.8 438.4   0.779
##  CCCH elevated CO - CCCH zero CO                  2.795 32.9 552.3   0.085
##  CCCH elevated CO - HHCC zero CO                 20.848 38.3 226.6   0.544
##  CCCH elevated CO - CCHC zero CO                -32.080 43.1 170.5  -0.744
##  CCCH elevated CO - HHHC zero CO                 -5.509 39.1 102.0  -0.141
##  HHCC elevated CO - CCHC elevated CO             -3.938 36.4 457.3  -0.108
##  HHCC elevated CO - HHHC elevated CO             10.430 38.0 283.1   0.275
##  HHCC elevated CO - CCCC zero CO                 30.619 37.4 258.4   0.819
##  HHCC elevated CO - CCCH zero CO                  5.502 35.3 203.2   0.156
##  HHCC elevated CO - HHCC zero CO                 23.555 32.7 552.4   0.720
##  HHCC elevated CO - CCHC zero CO                -29.373 36.7 425.8  -0.801
##  HHCC elevated CO - HHHC zero CO                 -2.802 38.1 294.4  -0.074
##  CCHC elevated CO - HHHC elevated CO             14.367 41.7 138.1   0.344
##  CCHC elevated CO - CCCC zero CO                 34.557 42.8 187.8   0.807
##  CCHC elevated CO - CCCH zero CO                  9.439 41.1 154.0   0.230
##  CCHC elevated CO - HHCC zero CO                 27.492 37.2 468.3   0.739
##  CCHC elevated CO - CCHC zero CO                -25.436 36.3 553.5  -0.700
##  CCHC elevated CO - HHHC zero CO                  1.135 41.8 155.2   0.027
##  HHHC elevated CO - CCCC zero CO                 20.189 37.7 238.1   0.535
##  HHHC elevated CO - CCCH zero CO                 -4.928 37.5  72.5  -0.132
##  HHHC elevated CO - HHCC zero CO                 13.125 39.1 289.6   0.336
##  HHHC elevated CO - CCHC zero CO                -39.803 42.4 117.7  -0.939
##  HHHC elevated CO - HHHC zero CO                -13.232 36.4 551.5  -0.363
##  CCCC zero CO - CCCH zero CO                    -25.118 34.6 369.1  -0.727
##  CCCC zero CO - HHCC zero CO                     -7.064 38.8 217.7  -0.182
##  CCCC zero CO - CCHC zero CO                    -59.992 43.8 164.8  -1.369
##  CCCC zero CO - HHHC zero CO                    -33.421 37.8 282.4  -0.883
##  CCCH zero CO - HHCC zero CO                     18.053 36.7 176.7   0.492
##  CCCH zero CO - CCHC zero CO                    -34.875 41.7 138.2  -0.836
##  CCCH zero CO - HHHC zero CO                     -8.304 37.7  84.0  -0.220
##  HHCC zero CO - CCHC zero CO                    -52.928 37.3 451.4  -1.419
##  HHCC zero CO - HHHC zero CO                    -26.357 39.3 295.2  -0.671
##  CCHC zero CO - HHHC zero CO                     26.571 42.6 130.8   0.624
##  p.value
##   1.0000
##   1.0000
##   1.0000
##   0.0904
##   1.0000
##   0.9987
##   1.0000
##   1.0000
##   1.0000
##   0.6594
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9998
##   1.0000
##   1.0000
##   1.0000
##   0.2076
##   1.0000
##   0.9989
##   1.0000
##   1.0000
##   1.0000
##   0.8746
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9999
##   1.0000
##   1.0000
##   0.7185
##   0.9999
##   1.0000
##   1.0000
##   1.0000
##   0.9994
##   0.9999
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9993
##   1.0000
##   0.9996
##   1.0000
##   1.0000
##   0.5823
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9989
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.0753
##   0.8093
##   0.2787
##   0.2832
##   0.0252
##   0.9997
##   0.3730
##   0.3866
##   0.6459
##   0.1461
##   0.0427
##   0.2682
##   0.1201
##   0.9624
##   0.3543
##   0.9973
##   1.0000
##   1.0000
##   1.0000
##   0.5817
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9997
##   1.0000
##   1.0000
##   1.0000
##   0.9925
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9876
##   1.0000
##   0.9989
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9804
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9707
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9994
##   1.0000
##   0.7127
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9971
##   1.0000
##   0.9766
##   0.9919
##   0.9993
##   0.9609
##   0.4858
##   0.9504
##   0.8591
##   1.0000
##   0.9961
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9981
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9974
##   1.0000
##   1.0000
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 20 estimates
plot(emmeans(lmer.MMR, pairwise ~ Parental_treatment * Temp * Control_CO2, adjust="tukey") )

#for graphs
MMREMM = (emmeans(lmer.MMR, ~ Parental_treatment * Temp * Control_CO2 ) %>% as.data.frame)
MMREMM
##  Parental_treatment Temp     Control_CO2   emmean       SE   df lower.CL
##  CCCC               elevated control     645.5596 51.15270 5.63 518.3750
##  CCCH               elevated control     647.7144 52.99394 6.00 518.0222
##  HHCC               elevated control     683.8960 51.40446 5.56 555.6572
##  CCHC               elevated control     670.5691 52.23436 5.57 540.3061
##  HHHC               elevated control     772.9571 52.52655 6.18 645.3075
##  CCCC               zero     control     643.5675 50.84310 5.48 516.2256
##  CCCH               zero     control     691.7364 50.93511 5.27 562.8122
##  HHCC               zero     control     663.3859 50.50652 5.17 534.8080
##  CCHC               zero     control     652.4835 52.29959 5.65 522.5672
##  HHHC               zero     control     635.7282 52.46546 6.05 507.6023
##  CCCC               elevated CO          726.2022 51.67712 5.80 598.7146
##  CCCH               elevated CO          664.0994 51.98632 5.91 536.4278
##  HHCC               elevated CO          666.8057 51.25924 5.48 538.4459
##  CCHC               elevated CO          670.7433 53.22907 6.22 541.5865
##  HHHC               elevated CO          656.3759 52.39038 6.04 528.3980
##  CCCC               zero     CO          636.1867 51.51720 5.81 509.1031
##  CCCH               zero     CO          661.3042 51.00431 5.34 532.6797
##  HHCC               zero     CO          643.2509 52.08160 5.74 514.3734
##  CCHC               zero     CO          696.1790 53.84988 6.17 565.2738
##  HHHC               zero     CO          669.6079 52.44571 6.16 542.0993
##  upper.CL
##  772.7442
##  777.4065
##  812.1348
##  800.8320
##  900.6067
##  770.9095
##  820.6606
##  791.9637
##  782.3998
##  763.8541
##  853.6897
##  791.7711
##  795.1655
##  799.9000
##  784.3539
##  763.2703
##  789.9287
##  772.1285
##  827.0842
##  797.1166
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
#combine column for x axis
MMREMM_graph <- MMREMM %>%  
 unite(Temp:Control_CO2 , col="Juv_treat", sep="_", remove=FALSE)
MMREMM_graph
##    Parental_treatment        Juv_treat     Temp Control_CO2   emmean       SE
## 1                CCCC elevated_control elevated     control 645.5596 51.15270
## 2                CCCH elevated_control elevated     control 647.7144 52.99394
## 3                HHCC elevated_control elevated     control 683.8960 51.40446
## 4                CCHC elevated_control elevated     control 670.5691 52.23436
## 5                HHHC elevated_control elevated     control 772.9571 52.52655
## 6                CCCC     zero_control     zero     control 643.5675 50.84310
## 7                CCCH     zero_control     zero     control 691.7364 50.93511
## 8                HHCC     zero_control     zero     control 663.3859 50.50652
## 9                CCHC     zero_control     zero     control 652.4835 52.29959
## 10               HHHC     zero_control     zero     control 635.7282 52.46546
## 11               CCCC      elevated_CO elevated          CO 726.2022 51.67712
## 12               CCCH      elevated_CO elevated          CO 664.0994 51.98632
## 13               HHCC      elevated_CO elevated          CO 666.8057 51.25924
## 14               CCHC      elevated_CO elevated          CO 670.7433 53.22907
## 15               HHHC      elevated_CO elevated          CO 656.3759 52.39038
## 16               CCCC          zero_CO     zero          CO 636.1867 51.51720
## 17               CCCH          zero_CO     zero          CO 661.3042 51.00431
## 18               HHCC          zero_CO     zero          CO 643.2509 52.08160
## 19               CCHC          zero_CO     zero          CO 696.1790 53.84988
## 20               HHHC          zero_CO     zero          CO 669.6079 52.44571
##          df lower.CL upper.CL
## 1  5.630482 518.3750 772.7442
## 2  5.996059 518.0222 777.4065
## 3  5.559366 555.6572 812.1348
## 4  5.566810 540.3061 800.8320
## 5  6.175088 645.3075 900.6067
## 6  5.477618 516.2256 770.9095
## 7  5.272385 562.8122 820.6606
## 8  5.167179 534.8080 791.9637
## 9  5.650441 522.5672 782.3998
## 10 6.049152 507.6023 763.8541
## 11 5.804748 598.7146 853.6897
## 12 5.911003 536.4278 791.7711
## 13 5.481483 538.4459 795.1655
## 14 6.216162 541.5865 799.9000
## 15 6.042200 528.3980 784.3539
## 16 5.806463 509.1031 763.2703
## 17 5.342199 532.6797 789.9287
## 18 5.735466 514.3734 772.1285
## 19 6.167119 565.2738 827.0842
## 20 6.163636 542.0993 797.1166

plot modeled data

#Plot#

cbPalette <- c("#56B4E9", "#E69F00", "#D55E00","#009E73", "#999999")                                                 

#better labels#
graph <- ggplot(MMREMM_graph, aes (x = Juv_treat,  y=emmean, colour=Parental_treatment)) + geom_pointrange(aes (ymin = emmean-SE, ymax = emmean+SE), position=position_dodge(width=1), size=1)  +  
  
  facet_grid(~factor(Juv_treat, levels =c( "zero_control","elevated_control", "zero_CO", "elevated_CO"), labels=str_wrap(c("Control",  "Elevated Temperature",  "Elevated CO2", "Elevated Temperature & CO2"), width = 10)), scales = "free_x") + labs(x="Juvenile treatment", y=expression("Maximum oxygen consumption (mg O"[2]*" kg"^{-1}*" hr"^{-1}*")")) +
  
   scale_x_discrete(breaks = c("zero_control","elevated_control", "zero_CO", "elevated_CO"), 
     labels = str_wrap(
     c("Control",  "Warm temperature",  "Elevated CO2", "Warm temperature & Elevated CO2" ), width = 10)
     ) + 
  
  scale_colour_manual(values=cbPalette, name = "Cross-generation experience", labels = c("Control", "Parental development", "Grandparental development", "Grandparental post-maturation", "Continuous grandparent")) +
 
 theme_calc() + theme(text = element_text(size=20)) + theme(panel.spacing = unit(1, "cm", data = NULL)) +  theme_classic()+ theme(strip.text.x = element_blank()) 

print(graph)

ggsave("MMR_graph.eps", graph, height = 6, width = 14, dpi = 320)

AS

Exploring raw data

ggplot(Resp_data_summary, aes(y=AS, x=Age)) + geom_point()

ggplot(Resp_data_summary, aes(y=AS, x=Weight)) + geom_point()

ggplot(Resp_data_summary, aes(y=AS, x=Juv_treat, colour=Parental_treatment)) + geom_boxplot()

Raw data checks

qqPlot(Resp_data_summary$AS)

## [1] 271 135
shapiro.test(Resp_data_summary$AS)
## 
##  Shapiro-Wilk normality test
## 
## data:  Resp_data_summary$AS
## W = 0.97801, p-value = 1.191e-07
nortest::lillie.test(Resp_data_summary$AS)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Resp_data_summary$AS
## D = 0.061425, p-value = 1.998e-05
leveneTest(AS ~ Parental_treatment * Temp * Control_CO2, data = Resp_data_summary)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value  Pr(>F)  
## group  19  1.5096 0.07616 .
##       560                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
kurtosis(Resp_data_summary$AS)
## [1] 2.828478

model

lmer.AS = lmer(AS~ Parental_treatment * Temp * Control_CO2 + (1 | Maternal_GF) +    (1 | Maternal_GM)   + (1 | Paternal_GF) +(1 | Paternal_GM) +  (1 | Chamber_ID ) , data = Resp_data_summary)
## boundary (singular) fit: see help('isSingular')
#model assumptions below were not met so this model was not used 

post model checks

performance::check_model(lmer.AS, check="homogeneity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS, check="outliers") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS, check="qq") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS, check="normality") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS, check="linearity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS, check="pp_check")
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

#Homogeneity
plot(lmer.AS)

#normality
hist(residuals(lmer.AS), col="darkgray")

shapiro.test(residuals(lmer.AS))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(lmer.AS)
## W = 0.98716, p-value = 5.561e-05
qqnorm(resid(lmer.AS))
qqline(resid(lmer.AS))

#model fit
library(sjPlot)
plot_model(lmer.AS, type = "diag")
## [[1]]
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]
## [[2]]$Paternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Chamber_ID
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Paternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## 
## [[3]]

## 
## [[4]]
## `geom_smooth()` using formula = 'y ~ x'

#outlier test
outlierTest(lmer.AS)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
##     rstudent unadjusted p-value Bonferroni p
## 271  3.20009          0.0014526      0.84253

##sqrt model

Raw data checks

Resp_data_summary$sqrt_AS = sqrt(Resp_data_summary$AS)

head(Resp_data_summary)
## # A tibble: 6 × 31
##   Tank  Density Parental_number Female  Male Maternal Maternal_GF Maternal_GM
##   <fct>   <dbl> <fct>            <dbl> <dbl> <chr>    <chr>       <chr>      
## 1 49         18 89                 190   192 AE       A           E          
## 2 64         11 81                  42   138 DA       D           A          
## 3 130        18 94                 185   190 DA       D           A          
## 4 111        21 45                  76    77 DA       D           A          
## 5 8          16 89                 190   192 AE       A           E          
## 6 10         18 71                  42   193 DA       D           A          
## # ℹ 23 more variables: Paternal <chr>, Paternal_GF <chr>, Paternal_GM <chr>,
## #   Parental_treatment <fct>, DOM <chr>, DOT <chr>, DOD <chr>, Age <dbl>,
## #   Juv_treat <fct>, Control_CO2 <fct>, Temp <fct>, am_pm <fct>,
## #   Chamber_ID <chr>, Wet_weight <dbl>, RMR <dbl>, Mo2_rest <dbl>,
## #   Weight <dbl>, MMR <dbl>, AS <dbl>, FS <dbl>, Mo2_max <dbl>, Mo2_AS <dbl>,
## #   sqrt_AS <dbl>
qqPlot(Resp_data_summary$sqrt_AS)

## [1] 271 135
shapiro.test(Resp_data_summary$sqrt_AS)
## 
##  Shapiro-Wilk normality test
## 
## data:  Resp_data_summary$sqrt_AS
## W = 0.99391, p-value = 0.01969
nortest::lillie.test(Resp_data_summary$sqrt_AS)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  Resp_data_summary$sqrt_AS
## D = 0.030311, p-value = 0.2195
leveneTest(sqrt_AS ~ Parental_treatment * Temp * Control_CO2, data = Resp_data_summary)
## Levene's Test for Homogeneity of Variance (center = median)
##        Df F value Pr(>F)
## group  19  1.3445 0.1491
##       560
kurtosis(Resp_data_summary$sqrt_AS)
## [1] 2.548309
lmer.AS.sqrt = lmer(sqrt_AS~ Parental_treatment * Temp * Control_CO2 + (1 | Maternal_GF) +  (1 | Maternal_GM)   + (1 | Paternal_GF) +(1 | Paternal_GM) +  (1 | Chamber_ID ) , data = Resp_data_summary)
## boundary (singular) fit: see help('isSingular')

post model checks

performance::check_model(lmer.AS.sqrt, check="homogeneity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS.sqrt, check="outliers") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS.sqrt, check="qq") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS.sqrt, check="normality") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS.sqrt, check="linearity") 
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

performance::check_model(lmer.AS.sqrt, check="pp_check")
## Model has interaction terms. VIFs might be inflated.
##   You may check multicollinearity among predictors of a model without
##   interaction terms.

#Homogeneity
plot(lmer.AS.sqrt)

#normality
hist(residuals(lmer.AS.sqrt), col="darkgray")

shapiro.test(residuals(lmer.AS.sqrt))
## 
##  Shapiro-Wilk normality test
## 
## data:  residuals(lmer.AS.sqrt)
## W = 0.99663, p-value = 0.2646
qqnorm(resid(lmer.AS.sqrt))
qqline(resid(lmer.AS.sqrt))

#model fit
library(sjPlot)
plot_model(lmer.AS.sqrt, type = "diag")
## [[1]]
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]
## [[2]]$Paternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Chamber_ID
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GF
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Paternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## [[2]]$Maternal_GM
## `geom_smooth()` using formula = 'y ~ x'

## 
## 
## [[3]]

## 
## [[4]]
## `geom_smooth()` using formula = 'y ~ x'

#outlier test
outlierTest(lmer.AS.sqrt)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
##     rstudent unadjusted p-value Bonferroni p
## 271 2.713601          0.0068632           NA
plot(simulateResiduals(lmer.AS.sqrt))

model analysis

summary(lmer.AS.sqrt)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: 
## sqrt_AS ~ Parental_treatment * Temp * Control_CO2 + (1 | Maternal_GF) +  
##     (1 | Maternal_GM) + (1 | Paternal_GF) + (1 | Paternal_GM) +  
##     (1 | Chamber_ID)
##    Data: Resp_data_summary
## 
## REML criterion at convergence: 2878.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.59689 -0.66554 -0.05352  0.68908  2.66220 
## 
## Random effects:
##  Groups      Name        Variance  Std.Dev. 
##  Paternal_GF (Intercept) 0.000e+00 0.0000000
##  Chamber_ID  (Intercept) 3.049e+00 1.7462632
##  Maternal_GF (Intercept) 1.767e-08 0.0001329
##  Paternal_GM (Intercept) 0.000e+00 0.0000000
##  Maternal_GM (Intercept) 1.918e-01 0.4379900
##  Residual                8.637e+00 2.9389294
## Number of obs: 580, groups:  
## Paternal_GF, 5; Chamber_ID, 4; Maternal_GF, 4; Paternal_GM, 3; Maternal_GM, 3
## 
## Fixed effects:
##                                                Estimate Std. Error        df
## (Intercept)                                    19.97474    1.06113   6.13922
## Parental_treatmentCCCH                          0.52933    0.78793 555.50369
## Parental_treatmentHHCC                          0.95247    0.76751 540.40694
## Parental_treatmentCCHC                          0.83637    0.78989 360.78698
## Parental_treatmentHHHC                          2.76390    0.81069 556.43759
## Tempzero                                       -0.02483    0.74692 555.30915
## Control_CO2CO                                   2.09831    0.77230 555.30880
## Parental_treatmentCCCH:Tempzero                 0.63548    1.06651 555.38998
## Parental_treatmentHHCC:Tempzero                -0.50349    1.03514 555.36309
## Parental_treatmentCCHC:Tempzero                -0.43790    1.05252 555.35599
## Parental_treatmentHHHC:Tempzero                -2.68475    1.12435 555.40822
## Parental_treatmentCCCH:Control_CO2CO           -1.68979    1.11832 555.41980
## Parental_treatmentHHCC:Control_CO2CO           -2.45011    1.07063 555.33423
## Parental_treatmentCCHC:Control_CO2CO           -1.76268    1.10087 555.32229
## Parental_treatmentHHHC:Control_CO2CO           -4.57577    1.14199 555.38615
## Tempzero:Control_CO2CO                         -1.93745    1.08404 555.31420
## Parental_treatmentCCCH:Tempzero:Control_CO2CO   1.17531    1.52579 555.31483
## Parental_treatmentHHCC:Tempzero:Control_CO2CO   2.17335    1.50303 555.43978
## Parental_treatmentCCHC:Tempzero:Control_CO2CO   2.67658    1.55404 555.37592
## Parental_treatmentHHHC:Tempzero:Control_CO2CO   4.98573    1.60894 555.49280
##                                               t value Pr(>|t|)    
## (Intercept)                                    18.824 1.16e-06 ***
## Parental_treatmentCCCH                          0.672 0.501993    
## Parental_treatmentHHCC                          1.241 0.215151    
## Parental_treatmentCCHC                          1.059 0.290382    
## Parental_treatmentHHHC                          3.409 0.000698 ***
## Tempzero                                       -0.033 0.973491    
## Control_CO2CO                                   2.717 0.006794 ** 
## Parental_treatmentCCCH:Tempzero                 0.596 0.551517    
## Parental_treatmentHHCC:Tempzero                -0.486 0.626879    
## Parental_treatmentCCHC:Tempzero                -0.416 0.677533    
## Parental_treatmentHHHC:Tempzero                -2.388 0.017282 *  
## Parental_treatmentCCCH:Control_CO2CO           -1.511 0.131353    
## Parental_treatmentHHCC:Control_CO2CO           -2.288 0.022485 *  
## Parental_treatmentCCHC:Control_CO2CO           -1.601 0.109910    
## Parental_treatmentHHHC:Control_CO2CO           -4.007 6.99e-05 ***
## Tempzero:Control_CO2CO                         -1.787 0.074442 .  
## Parental_treatmentCCCH:Tempzero:Control_CO2CO   0.770 0.441451    
## Parental_treatmentHHCC:Tempzero:Control_CO2CO   1.446 0.148747    
## Parental_treatmentCCHC:Tempzero:Control_CO2CO   1.722 0.085564 .  
## Parental_treatmentHHHC:Tempzero:Control_CO2CO   3.099 0.002042 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Anova(lmer.AS.sqrt)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: sqrt_AS
##                                       Chisq Df Pr(>Chisq)  
## Parental_treatment                   1.9409  4    0.74663  
## Temp                                 3.6215  1    0.05704 .
## Control_CO2                          0.3505  1    0.55385  
## Parental_treatment:Temp              4.2911  4    0.36804  
## Parental_treatment:Control_CO2       8.2531  4    0.08273 .
## Temp:Control_CO2                     0.1053  1    0.74557  
## Parental_treatment:Temp:Control_CO2 10.6567  4    0.03071 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#AS
emmeans(lmer.AS.sqrt, pairwise ~ Temp, adjust="tukey") 
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Temp     emmean    SE   df lower.CL upper.CL
##  elevated   21.0 0.945 3.58     18.2     23.7
##  zero       20.5 0.946 3.56     17.7     23.3
## 
## Results are averaged over the levels of: Parental_treatment, Control_CO2 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast        estimate    SE  df t.ratio p.value
##  elevated - zero    0.491 0.247 553   1.982  0.0479
## 
## Results are averaged over the levels of: Parental_treatment, Control_CO2 
## Degrees-of-freedom method: kenward-roger
plot(emmeans(lmer.AS.sqrt, pairwise ~ Temp, adjust="tukey"))
## NOTE: Results may be misleading due to involvement in interactions

emmeans(lmer.AS.sqrt, pairwise ~Control_CO2*  Temp, adjust="tukey") 
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Control_CO2 Temp     emmean    SE   df lower.CL upper.CL
##  control     elevated   21.0 0.961 3.84     18.3     23.7
##  CO          elevated   21.0 0.962 3.85     18.3     23.7
##  control     zero       20.4 0.958 3.78     17.6     23.1
##  CO          zero       20.6 0.965 3.85     17.9     23.4
## 
## Results are averaged over the levels of: Parental_treatment 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                        estimate    SE  df t.ratio p.value
##  control elevated - CO elevated  -0.00264 0.355 554  -0.007  1.0000
##  control elevated - control zero  0.62296 0.341 552   1.825  0.2626
##  control elevated - CO zero       0.35558 0.356 553   0.999  0.7498
##  CO elevated - control zero       0.62560 0.345 552   1.812  0.2686
##  CO elevated - CO zero            0.35822 0.358 554   1.002  0.7485
##  control zero - CO zero          -0.26738 0.345 553  -0.774  0.8662
## 
## Results are averaged over the levels of: Parental_treatment 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 4 estimates
plot(emmeans(lmer.AS.sqrt, pairwise ~ Control_CO2* Temp, adjust="tukey"))
## NOTE: Results may be misleading due to involvement in interactions

emmeans(lmer.AS.sqrt, pairwise ~ Parental_treatment * Temp * Control_CO2, adjust="tukey") 
## $emmeans
##  Parental_treatment Temp     Control_CO2 emmean   SE   df lower.CL upper.CL
##  CCCC               elevated control       20.0 1.10 6.13     17.3     22.6
##  CCCH               elevated control       20.5 1.14 6.59     17.8     23.2
##  HHCC               elevated control       20.9 1.10 6.04     18.2     23.6
##  CCHC               elevated control       20.8 1.12 6.03     18.1     23.6
##  HHHC               elevated control       22.7 1.13 6.83     20.1     25.4
##  CCCC               zero     control       19.9 1.09 5.93     17.3     22.6
##  CCCH               zero     control       21.1 1.09 5.67     18.4     23.8
##  HHCC               zero     control       20.4 1.08 5.54     17.7     23.1
##  CCHC               zero     control       20.3 1.12 6.13     17.6     23.1
##  HHHC               zero     control       20.0 1.13 6.67     17.3     22.7
##  CCCC               elevated CO            22.1 1.11 6.35     19.4     24.8
##  CCCH               elevated CO            20.9 1.12 6.49     18.2     23.6
##  HHCC               elevated CO            20.6 1.10 5.94     17.9     23.3
##  CCHC               elevated CO            21.1 1.15 6.86     18.4     23.9
##  HHHC               elevated CO            20.3 1.13 6.66     17.6     23.0
##  CCCC               zero     CO            20.1 1.10 6.35     17.4     22.8
##  CCCH               zero     CO            20.8 1.09 5.76     18.1     23.5
##  HHCC               zero     CO            20.3 1.12 6.26     17.6     23.0
##  CCHC               zero     CO            21.4 1.16 6.80     18.7     24.2
##  HHHC               zero     CO            20.6 1.13 6.82     17.9     23.3
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast                                      estimate    SE    df t.ratio
##  CCCC elevated control - CCCH elevated control  -0.5293 0.866 259.9  -0.611
##  CCCC elevated control - HHCC elevated control  -0.9525 0.865 210.6  -1.101
##  CCCC elevated control - CCHC elevated control  -0.8364 0.968 129.6  -0.864
##  CCCC elevated control - HHHC elevated control  -2.7639 0.869 270.4  -3.179
##  CCCC elevated control - CCCC zero control       0.0248 0.747 551.5   0.033
##  CCCC elevated control - CCCH zero control      -1.1400 0.793 331.3  -1.438
##  CCCC elevated control - HHCC zero control      -0.4242 0.850 170.3  -0.499
##  CCCC elevated control - CCHC zero control      -0.3736 0.968 136.2  -0.386
##  CCCC elevated control - HHHC zero control      -0.0543 0.869 223.9  -0.063
##  CCCC elevated control - CCCC elevated CO       -2.0983 0.775 551.1  -2.709
##  CCCC elevated control - CCCH elevated CO       -0.9378 0.824 438.1  -1.139
##  CCCC elevated control - HHCC elevated CO       -0.6007 0.871 185.3  -0.690
##  CCCC elevated control - CCHC elevated CO       -1.1720 0.993 155.6  -1.181
##  CCCC elevated control - HHHC elevated CO       -0.2864 0.873 228.6  -0.328
##  CCCC elevated control - CCCC zero CO           -0.1360 0.776 551.9  -0.175
##  CCCC elevated control - CCCH zero CO           -0.7864 0.796 357.3  -0.988
##  CCCC elevated control - HHCC zero CO           -0.3082 0.903 156.1  -0.341
##  CCCC elevated control - CCHC zero CO           -1.4484 1.019 134.1  -1.422
##  CCCC elevated control - HHHC zero CO           -0.6251 0.874 274.1  -0.715
##  CCCH elevated control - HHCC elevated control  -0.4231 0.904 154.6  -0.468
##  CCCH elevated control - CCHC elevated control  -0.3070 0.987 111.8  -0.311
##  CCCH elevated control - HHHC elevated control  -2.2346 0.928  73.0  -2.409
##  CCCH elevated control - CCCC zero control       0.5542 0.858 256.9   0.646
##  CCCH elevated control - CCCH zero control      -0.6106 0.766 554.2  -0.797
##  CCCH elevated control - HHCC zero control       0.1052 0.875 144.0   0.120
##  CCCH elevated control - CCHC zero control       0.1557 0.993 117.0   0.157
##  CCCH elevated control - HHHC zero control       0.4750 0.921  63.6   0.516
##  CCCH elevated control - CCCC elevated CO       -1.5690 0.879 288.7  -1.786
##  CCCH elevated control - CCCH elevated CO       -0.4085 0.819 554.0  -0.499
##  CCCH elevated control - HHCC elevated CO       -0.0713 0.902 145.8  -0.079
##  CCCH elevated control - CCHC elevated CO       -0.6427 1.018 137.3  -0.631
##  CCCH elevated control - HHHC elevated CO        0.2429 0.927  64.5   0.262
##  CCCH elevated control - CCCC zero CO            0.3933 0.867 271.4   0.453
##  CCCH elevated control - CCCH zero CO           -0.2570 0.775 554.7  -0.332
##  CCCH elevated control - HHCC zero CO            0.2211 0.931 131.8   0.238
##  CCCH elevated control - CCHC zero CO           -0.9191 1.033 112.3  -0.890
##  CCCH elevated control - HHHC zero CO           -0.0958 0.934  73.5  -0.103
##  HHCC elevated control - CCHC elevated control   0.1161 0.811 381.8   0.143
##  HHCC elevated control - HHHC elevated control  -1.8114 0.886 309.2  -2.045
##  HHCC elevated control - CCCC zero control       0.9773 0.854 210.2   1.144
##  HHCC elevated control - CCCH zero control      -0.1875 0.821 202.4  -0.228
##  HHCC elevated control - HHCC zero control       0.5283 0.718 552.7   0.735
##  HHCC elevated control - CCHC zero control       0.5788 0.816 417.5   0.709
##  HHCC elevated control - HHHC zero control       0.8982 0.883 297.9   1.018
##  HHCC elevated control - CCCC elevated CO       -1.1458 0.879 239.1  -1.303
##  HHCC elevated control - CCCH elevated CO        0.0146 0.853 292.8   0.017
##  HHCC elevated control - HHCC elevated CO        0.3518 0.743 552.0   0.474
##  HHCC elevated control - CCHC elevated CO       -0.2195 0.851 422.6  -0.258
##  HHCC elevated control - HHHC elevated CO        0.6660 0.878 306.4   0.758
##  HHCC elevated control - CCCC zero CO            0.8164 0.859 299.1   0.951
##  HHCC elevated control - CCCH zero CO            0.1661 0.815 230.8   0.204
##  HHCC elevated control - HHCC zero CO            0.6442 0.764 554.1   0.843
##  HHCC elevated control - CCHC zero CO           -0.4959 0.859 385.9  -0.577
##  HHCC elevated control - HHHC zero CO            0.3273 0.881 320.4   0.371
##  CCHC elevated control - HHHC elevated control  -1.9275 0.941 126.6  -2.048
##  CCHC elevated control - CCCC zero control       0.8612 0.957 122.6   0.900
##  CCHC elevated control - CCCH zero control      -0.3036 0.915 124.4  -0.332
##  CCHC elevated control - HHCC zero control       0.4122 0.775 411.4   0.532
##  CCHC elevated control - CCHC zero control       0.4627 0.742 551.7   0.624
##  CCHC elevated control - HHHC zero control       0.7821 0.938 112.4   0.834
##  CCHC elevated control - CCCC elevated CO       -1.2619 0.978 132.4  -1.291
##  CCHC elevated control - CCCH elevated CO       -0.1015 0.944 170.5  -0.108
##  CCHC elevated control - HHCC elevated CO        0.2357 0.801 416.4   0.294
##  CCHC elevated control - CCHC elevated CO       -0.3356 0.786 552.4  -0.427
##  CCHC elevated control - HHHC elevated CO        0.5499 0.928 112.5   0.593
##  CCHC elevated control - CCCC zero CO            0.7003 0.960 162.0   0.729
##  CCHC elevated control - CCCH zero CO            0.0500 0.911 138.7   0.055
##  CCHC elevated control - HHCC zero CO            0.5281 0.819 424.1   0.645
##  CCHC elevated control - CCHC zero CO           -0.6120 0.788 552.3  -0.777
##  CCHC elevated control - HHHC zero CO            0.2112 0.930 127.0   0.227
##  HHHC elevated control - CCCC zero control       2.7887 0.865 218.8   3.225
##  HHHC elevated control - CCCH zero control       1.6239 0.863  76.4   1.882
##  HHHC elevated control - HHCC zero control       2.3397 0.863 279.5   2.712
##  HHHC elevated control - CCHC zero control       2.3903 0.945 143.8   2.528
##  HHHC elevated control - HHHC zero control       2.7096 0.841 551.6   3.222
##  HHHC elevated control - CCCC elevated CO        0.6656 0.897 153.5   0.742
##  HHHC elevated control - CCCH elevated CO        1.8261 0.897 103.9   2.036
##  HHHC elevated control - HHCC elevated CO        2.1632 0.886 293.4   2.440
##  HHHC elevated control - CCHC elevated CO        1.5919 0.973 158.0   1.637
##  HHHC elevated control - HHHC elevated CO        2.4775 0.842 551.8   2.941
##  HHHC elevated control - CCCC zero CO            2.6279 0.870 284.4   3.021
##  HHHC elevated control - CCCH zero CO            1.9775 0.864  86.6   2.289
##  HHHC elevated control - HHCC zero CO            2.4557 0.913 289.0   2.690
##  HHHC elevated control - CCHC zero CO            1.3155 0.992 132.9   1.326
##  HHHC elevated control - HHHC zero CO            2.1388 0.850 551.4   2.516
##  CCCC zero control - CCCH zero control          -1.1648 0.783 325.0  -1.488
##  CCCC zero control - HHCC zero control          -0.4490 0.838 164.7  -0.536
##  CCCC zero control - CCHC zero control          -0.3985 0.957 129.4  -0.416
##  CCCC zero control - HHHC zero control          -0.0791 0.865 178.5  -0.092
##  CCCC zero control - CCCC elevated CO           -2.1231 0.762 552.1  -2.787
##  CCCC zero control - CCCH elevated CO           -0.9627 0.813 438.2  -1.184
##  CCCC zero control - HHCC elevated CO           -0.6255 0.859 182.1  -0.728
##  CCCC zero control - CCHC elevated CO           -1.1968 0.982 147.0  -1.219
##  CCCC zero control - HHHC elevated CO           -0.3113 0.869 182.8  -0.358
##  CCCC zero control - CCCC zero CO               -0.1609 0.765 552.1  -0.210
##  CCCC zero control - CCCH zero CO               -0.8112 0.786 348.8  -1.032
##  CCCC zero control - HHCC zero CO               -0.3331 0.892 152.2  -0.374
##  CCCC zero control - CCHC zero CO               -1.4732 1.007 128.9  -1.462
##  CCCC zero control - HHHC zero CO               -0.6500 0.869 222.4  -0.748
##  CCCH zero control - HHCC zero control           0.7158 0.793 180.0   0.902
##  CCCH zero control - CCHC zero control           0.7663 0.921 130.8   0.832
##  CCCH zero control - HHHC zero control           1.0857 0.857  65.2   1.266
##  CCCH zero control - CCCC elevated CO           -0.9583 0.805 358.2  -1.190
##  CCCH zero control - CCCH elevated CO            0.2021 0.756 552.7   0.267
##  CCCH zero control - HHCC elevated CO            0.5393 0.820 185.3   0.657
##  CCCH zero control - CCHC elevated CO           -0.0320 0.949 149.7  -0.034
##  CCCH zero control - HHHC elevated CO            0.8535 0.862  66.0   0.990
##  CCCH zero control - CCCC zero CO                1.0039 0.794 349.1   1.265
##  CCCH zero control - CCCH zero CO                0.3536 0.709 552.0   0.499
##  CCCH zero control - HHCC zero CO                0.8317 0.851 162.4   0.977
##  CCCH zero control - CCHC zero CO               -0.3084 0.963 128.4  -0.320
##  CCCH zero control - HHHC zero CO                0.5148 0.868  76.9   0.593
##  HHCC zero control - CCHC zero control           0.0505 0.780 436.0   0.065
##  HHCC zero control - HHHC zero control           0.3698 0.859 267.8   0.431
##  HHCC zero control - CCCC elevated CO           -1.6742 0.864 189.5  -1.938
##  HHCC zero control - CCCH elevated CO           -0.5137 0.829 262.7  -0.619
##  HHCC zero control - HHCC elevated CO           -0.1765 0.710 551.4  -0.249
##  HHCC zero control - CCHC elevated CO           -0.7479 0.816 450.3  -0.916
##  HHCC zero control - HHHC elevated CO            0.1377 0.852 274.3   0.162
##  HHCC zero control - CCCC zero CO                0.2881 0.841 250.1   0.342
##  HHCC zero control - CCCH zero CO               -0.3622 0.788 202.9  -0.460
##  HHCC zero control - HHCC zero CO                0.1159 0.732 553.2   0.158
##  HHCC zero control - CCHC zero CO               -1.0243 0.822 419.4  -1.245
##  HHCC zero control - HHHC zero CO               -0.2010 0.856 288.2  -0.235
##  CCHC zero control - HHHC zero control           0.3193 0.942 127.0   0.339
##  CCHC zero control - CCCC elevated CO           -1.7247 0.978 140.8  -1.763
##  CCHC zero control - CCCH elevated CO           -0.5642 0.950 178.6  -0.594
##  CCHC zero control - HHCC elevated CO           -0.2270 0.807 439.5  -0.281
##  CCHC zero control - CCHC elevated CO           -0.7984 0.793 552.5  -1.007
##  CCHC zero control - HHHC elevated CO            0.0872 0.931 127.0   0.094
##  CCHC zero control - CCCC zero CO                0.2376 0.961 171.7   0.247
##  CCHC zero control - CCCH zero CO               -0.4127 0.917 146.0  -0.450
##  CCHC zero control - HHCC zero CO                0.0654 0.826 435.5   0.079
##  CCHC zero control - CCHC zero CO               -1.0748 0.795 553.4  -1.353
##  CCHC zero control - HHHC zero CO               -0.2515 0.934 144.0  -0.269
##  HHHC zero control - CCCC elevated CO           -2.0440 0.897 125.4  -2.278
##  HHHC zero control - CCCH elevated CO           -0.8835 0.893  89.2  -0.989
##  HHHC zero control - HHCC elevated CO           -0.5464 0.883 283.4  -0.619
##  HHHC zero control - CCHC elevated CO           -1.1177 0.970 140.8  -1.152
##  HHHC zero control - HHHC elevated CO           -0.2321 0.833 551.4  -0.279
##  HHHC zero control - CCCC zero CO               -0.0817 0.868 238.1  -0.094
##  HHHC zero control - CCCH zero CO               -0.7320 0.860  74.4  -0.852
##  HHHC zero control - HHCC zero CO               -0.2539 0.909 285.3  -0.279
##  HHHC zero control - CCHC zero CO               -1.3941 0.989 120.0  -1.410
##  HHHC zero control - HHHC zero CO               -0.5708 0.843 552.2  -0.677
##  CCCC elevated CO - CCCH elevated CO             1.1605 0.836 462.3   1.389
##  CCCC elevated CO - HHCC elevated CO             1.4976 0.884 207.4   1.694
##  CCCC elevated CO - CCHC elevated CO             0.9263 1.002 157.6   0.924
##  CCCC elevated CO - HHHC elevated CO             1.8119 0.901 128.4   2.011
##  CCCC elevated CO - CCCC zero CO                 1.9623 0.791 553.0   2.481
##  CCCC elevated CO - CCCH zero CO                 1.3120 0.810 374.6   1.621
##  CCCC elevated CO - HHCC zero CO                 1.7901 0.916 173.3   1.954
##  CCCC elevated CO - CCHC zero CO                 0.6499 1.027 137.2   0.633
##  CCCC elevated CO - HHHC zero CO                 1.4732 0.901 156.3   1.635
##  CCCH elevated CO - HHCC elevated CO             0.3372 0.854 267.9   0.395
##  CCCH elevated CO - CCHC elevated CO            -0.2342 0.976 194.2  -0.240
##  CCCH elevated CO - HHHC elevated CO             0.6514 0.898  90.8   0.725
##  CCCH elevated CO - CCCC zero CO                 0.8018 0.826 441.6   0.970
##  CCCH elevated CO - CCCH zero CO                 0.1515 0.760 552.4   0.199
##  CCCH elevated CO - HHCC zero CO                 0.6296 0.883 231.8   0.713
##  CCCH elevated CO - CCHC zero CO                -0.5106 0.992 175.3  -0.515
##  CCCH elevated CO - HHHC zero CO                 0.3127 0.902 105.2   0.347
##  HHCC elevated CO - CCHC elevated CO            -0.5713 0.841 452.8  -0.679
##  HHCC elevated CO - HHHC elevated CO             0.3142 0.877 291.8   0.358
##  HHCC elevated CO - CCCC zero CO                 0.4646 0.862 265.9   0.539
##  HHCC elevated CO - CCCH zero CO                -0.1857 0.814 209.0  -0.228
##  HHCC elevated CO - HHCC zero CO                 0.2924 0.755 552.5   0.387
##  HHCC elevated CO - CCHC zero CO                -0.8477 0.847 426.9  -1.001
##  HHCC elevated CO - HHHC zero CO                -0.0245 0.880 304.2  -0.028
##  CCHC elevated CO - HHHC elevated CO             0.8856 0.961 140.9   0.922
##  CCHC elevated CO - CCCC zero CO                 1.0360 0.986 189.5   1.050
##  CCHC elevated CO - CCCH zero CO                 0.3857 0.945 161.4   0.408
##  CCHC elevated CO - HHCC zero CO                 0.8638 0.859 457.6   1.005
##  CCHC elevated CO - CCHC zero CO                -0.2764 0.838 553.5  -0.330
##  CCHC elevated CO - HHHC zero CO                 0.5469 0.963 158.5   0.568
##  HHHC elevated CO - CCCC zero CO                 0.1504 0.871 241.8   0.173
##  HHHC elevated CO - CCCH zero CO                -0.4999 0.863  74.9  -0.579
##  HHHC elevated CO - HHCC zero CO                -0.0218 0.903 298.1  -0.024
##  HHHC elevated CO - CCHC zero CO                -1.1620 0.976 119.9  -1.190
##  HHHC elevated CO - HHHC zero CO                -0.3387 0.841 551.6  -0.403
##  CCCC zero CO - CCCH zero CO                    -0.6503 0.797 373.7  -0.816
##  CCCC zero CO - HHCC zero CO                    -0.1722 0.894 223.8  -0.193
##  CCCC zero CO - CCHC zero CO                    -1.3124 1.009 166.2  -1.300
##  CCCC zero CO - HHHC zero CO                    -0.4891 0.873 286.6  -0.560
##  CCCH zero CO - HHCC zero CO                     0.4781 0.845 181.3   0.566
##  CCCH zero CO - CCHC zero CO                    -0.6621 0.959 143.6  -0.690
##  CCCH zero CO - HHHC zero CO                     0.1612 0.868  86.8   0.186
##  HHCC zero CO - CCHC zero CO                    -1.1402 0.862 446.9  -1.323
##  HHCC zero CO - HHHC zero CO                    -0.3169 0.906 304.5  -0.350
##  CCHC zero CO - HHHC zero CO                     0.8233 0.980 133.2   0.840
##  p.value
##   1.0000
##   0.9999
##   1.0000
##   0.1560
##   1.0000
##   0.9968
##   1.0000
##   1.0000
##   1.0000
##   0.4240
##   0.9999
##   1.0000
##   0.9997
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9969
##   1.0000
##   1.0000
##   1.0000
##   0.6534
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9639
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.8812
##   0.9998
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9991
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.8755
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9991
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.1408
##   0.9342
##   0.4242
##   0.5645
##   0.1355
##   1.0000
##   0.8796
##   0.6307
##   0.9845
##   0.2687
##   0.2281
##   0.7364
##   0.4402
##   0.9987
##   0.5716
##   0.9952
##   1.0000
##   1.0000
##   1.0000
##   0.3676
##   0.9998
##   1.0000
##   0.9996
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9956
##   1.0000
##   1.0000
##   1.0000
##   0.9991
##   0.9998
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9994
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9220
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9995
##   1.0000
##   1.0000
##   0.9662
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9986
##   1.0000
##   0.7454
##   1.0000
##   1.0000
##   0.9998
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9971
##   1.0000
##   0.9980
##   0.9782
##   1.0000
##   0.8920
##   0.5990
##   0.9871
##   0.9157
##   1.0000
##   0.9846
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9997
##   1.0000
##   1.0000
##   1.0000
##   0.9991
##   1.0000
##   1.0000
##   1.0000
##   1.0000
##   0.9990
##   1.0000
##   1.0000
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 20 estimates
plot(emmeans(lmer.AS.sqrt, pairwise ~ Parental_treatment * Temp * Control_CO2, adjust="tukey"))

#for graphs
ASEMM = (emmeans(lmer.AS.sqrt, ~ Parental_treatment * Temp * Control_CO2 ) %>% as.data.frame)
ASEMM
##  Parental_treatment Temp     Control_CO2   emmean       SE   df lower.CL
##  CCCC               elevated control     19.97474 1.095745 6.13 17.30699
##  CCCH               elevated control     20.50407 1.140422 6.59 17.77325
##  HHCC               elevated control     20.92721 1.102259 6.04 18.23405
##  CCHC               elevated control     20.81111 1.122510 6.03 18.06772
##  HHHC               elevated control     22.73864 1.129798 6.83 20.05392
##  CCCC               zero     control     19.94991 1.088038 5.93 17.28022
##  CCCH               zero     control     21.11471 1.089450 5.67 18.41123
##  HHCC               zero     control     20.39889 1.079788 5.54 17.70263
##  CCHC               zero     control     20.34838 1.124255 6.13 17.61199
##  HHHC               zero     control     20.02906 1.128322 6.67 17.33403
##  CCCC               elevated CO          22.07305 1.108700 6.35 19.39593
##  CCCH               elevated CO          20.91258 1.115784 6.49 18.23128
##  HHCC               elevated CO          20.57541 1.098530 5.94 17.88050
##  CCHC               elevated CO          21.14675 1.147100 6.86 18.42317
##  HHHC               elevated CO          20.26118 1.126484 6.66 17.56987
##  CCCC               zero     CO          20.11077 1.104709 6.35 17.44356
##  CCCH               zero     CO          20.76109 1.091146 5.76 18.06417
##  HHCC               zero     CO          20.28299 1.118715 6.26 17.57266
##  CCHC               zero     CO          21.42314 1.162056 6.80 18.65879
##  HHHC               zero     CO          20.59988 1.127834 6.82 17.91869
##  upper.CL
##  22.64249
##  23.23488
##  23.62037
##  23.55449
##  25.42336
##  22.61959
##  23.81820
##  23.09515
##  23.08476
##  22.72408
##  24.75017
##  23.59389
##  23.27032
##  23.87033
##  22.95249
##  22.77797
##  23.45801
##  22.99332
##  24.18749
##  23.28106
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
#back transform data
ASEMM$emmean2 = (ASEMM$emmean)^2

ASEMM$emmean.low = (ASEMM$emmean-ASEMM$SE)^2

ASEMM$emmean.high = (ASEMM$emmean+ASEMM$SE)^2

ASEMM
##  Parental_treatment Temp     Control_CO2   emmean       SE   df lower.CL
##  CCCC               elevated control     19.97474 1.095745 6.13 17.30699
##  CCCH               elevated control     20.50407 1.140422 6.59 17.77325
##  HHCC               elevated control     20.92721 1.102259 6.04 18.23405
##  CCHC               elevated control     20.81111 1.122510 6.03 18.06772
##  HHHC               elevated control     22.73864 1.129798 6.83 20.05392
##  CCCC               zero     control     19.94991 1.088038 5.93 17.28022
##  CCCH               zero     control     21.11471 1.089450 5.67 18.41123
##  HHCC               zero     control     20.39889 1.079788 5.54 17.70263
##  CCHC               zero     control     20.34838 1.124255 6.13 17.61199
##  HHHC               zero     control     20.02906 1.128322 6.67 17.33403
##  CCCC               elevated CO          22.07305 1.108700 6.35 19.39593
##  CCCH               elevated CO          20.91258 1.115784 6.49 18.23128
##  HHCC               elevated CO          20.57541 1.098530 5.94 17.88050
##  CCHC               elevated CO          21.14675 1.147100 6.86 18.42317
##  HHHC               elevated CO          20.26118 1.126484 6.66 17.56987
##  CCCC               zero     CO          20.11077 1.104709 6.35 17.44356
##  CCCH               zero     CO          20.76109 1.091146 5.76 18.06417
##  HHCC               zero     CO          20.28299 1.118715 6.26 17.57266
##  CCHC               zero     CO          21.42314 1.162056 6.80 18.65879
##  HHHC               zero     CO          20.59988 1.127834 6.82 17.91869
##  upper.CL  emmean2 emmean.low emmean.high
##  22.64249 398.9902   356.4164    443.9653
##  23.23488 420.4167   374.9507    468.4839
##  23.62037 437.9481   393.0287    485.2975
##  23.55449 433.1023   387.6409    481.0837
##  25.42336 517.0458   466.9420    569.7024
##  22.61959 397.9988   355.7701    442.5952
##  23.81820 445.8312   401.0112    493.0249
##  23.09515 416.1148   373.2278    461.3337
##  23.08476 414.0564   369.5669    461.0739
##  22.72408 401.1631   357.2377    447.6346
##  24.75017 487.2196   439.5040    537.3935
##  23.59389 437.3361   391.9132    485.2489
##  23.27032 423.3474   379.3487    469.7595
##  23.87033 447.1849   399.9858    497.0156
##  22.95249 410.5156   366.1367    457.4323
##  22.77797 404.4430   361.2302    450.0964
##  23.45801 431.0229   386.9067    477.5202
##  22.99332 411.3996   367.2694    458.0329
##  24.18749 458.9511   410.5117    510.0913
##  23.28106 424.3549   379.1604    472.0934
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95

plot modeled data

#combine column for x axis
ASEMM_graph <- ASEMM %>%  
 unite(Temp:Control_CO2 , col="Juv_treat", sep="_", remove=FALSE)
ASEMM_graph
##    Parental_treatment        Juv_treat     Temp Control_CO2   emmean       SE
## 1                CCCC elevated_control elevated     control 19.97474 1.095745
## 2                CCCH elevated_control elevated     control 20.50407 1.140422
## 3                HHCC elevated_control elevated     control 20.92721 1.102259
## 4                CCHC elevated_control elevated     control 20.81111 1.122510
## 5                HHHC elevated_control elevated     control 22.73864 1.129798
## 6                CCCC     zero_control     zero     control 19.94991 1.088038
## 7                CCCH     zero_control     zero     control 21.11471 1.089450
## 8                HHCC     zero_control     zero     control 20.39889 1.079788
## 9                CCHC     zero_control     zero     control 20.34838 1.124255
## 10               HHHC     zero_control     zero     control 20.02906 1.128322
## 11               CCCC      elevated_CO elevated          CO 22.07305 1.108700
## 12               CCCH      elevated_CO elevated          CO 20.91258 1.115784
## 13               HHCC      elevated_CO elevated          CO 20.57541 1.098530
## 14               CCHC      elevated_CO elevated          CO 21.14675 1.147100
## 15               HHHC      elevated_CO elevated          CO 20.26118 1.126484
## 16               CCCC          zero_CO     zero          CO 20.11077 1.104709
## 17               CCCH          zero_CO     zero          CO 20.76109 1.091146
## 18               HHCC          zero_CO     zero          CO 20.28299 1.118715
## 19               CCHC          zero_CO     zero          CO 21.42314 1.162056
## 20               HHHC          zero_CO     zero          CO 20.59988 1.127834
##          df lower.CL upper.CL  emmean2 emmean.low emmean.high
## 1  6.127234 17.30699 22.64249 398.9902   356.4164    443.9653
## 2  6.592638 17.77325 23.23488 420.4167   374.9507    468.4839
## 3  6.036732 18.23405 23.62037 437.9481   393.0287    485.2975
## 4  6.029910 18.06773 23.55449 433.1023   387.6409    481.0837
## 5  6.834453 20.05392 25.42336 517.0458   466.9420    569.7024
## 6  5.932573 17.28022 22.61959 397.9988   355.7701    442.5952
## 7  5.672984 18.41123 23.81820 445.8312   401.0112    493.0249
## 8  5.539907 17.70263 23.09515 416.1148   373.2278    461.3337
## 9  6.134620 17.61199 23.08476 414.0564   369.5669    461.0739
## 10 6.670259 17.33403 22.72408 401.1631   357.2377    447.6346
## 11 6.349345 19.39593 24.75017 487.2196   439.5040    537.3935
## 12 6.486960 18.23128 23.59389 437.3361   391.9132    485.2489
## 13 5.937228 17.88050 23.27032 423.3474   379.3487    469.7595
## 14 6.861743 18.42317 23.87032 447.1849   399.9858    497.0156
## 15 6.662532 17.56988 22.95249 410.5156   366.1367    457.4323
## 16 6.352221 17.44356 22.77797 404.4430   361.2302    450.0964
## 17 5.761872 18.06418 23.45801 431.0229   386.9067    477.5202
## 18 6.257412 17.57266 22.99332 411.3996   367.2694    458.0329
## 19 6.799348 18.65879 24.18749 458.9511   410.5117    510.0913
## 20 6.820626 17.91869 23.28106 424.3549   379.1604    472.0934
cbPalette <- c("#56B4E9", "#E69F00", "#D55E00","#009E73", "#999999")                                                  

#better labels#
graph <- ggplot(ASEMM_graph, aes (x = Juv_treat,  y=emmean2, colour=Parental_treatment)) + geom_pointrange(aes (ymin = emmean.low, ymax = emmean.high), position=position_dodge(width=1), size=1)  +  
  
  facet_grid(~factor(Juv_treat, levels =c( "zero_control","elevated_control", "zero_CO", "elevated_CO"), labels=str_wrap(c("Control",  "Elevated Temperature",  "Elevated CO2", "Elevated Temperature & CO2"), width = 10)), scales = "free_x") + labs(x="Juvenile treatment", y=expression("Aerobic scope (mg O"[2]*" kg"^{-1}*" hr"^{-1}*")")) +
  
   scale_x_discrete(breaks = c("zero_control","elevated_control", "zero_CO", "elevated_CO"), 
     labels = str_wrap(
     c("Control",  "Warm temperature",  "Elevated CO2", "Warm temperature & Elevated CO2"), width = 10)
     ) + 
  
  scale_colour_manual(values=cbPalette, name = "Cross-generation experience", labels = c("Control", "Parental development", "Grandparental development", "Grandparental post-maturation", "Continuous grandparent")) +
 
 theme_calc() + theme(text = element_text(size=20)) + theme(panel.spacing = unit(1, "cm", data = NULL)) +  theme_classic()+ theme(strip.text.x = element_blank()) 

print(graph)

ggsave("AS_graph.eps", graph,  height = 6, width = 14, dpi = 320)